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ABSTRACT

This paper introduces an adaptive noise detection method

for non-stationary acoustic noisy signals. The proposed ap-

proach is based on the empirical mode decomposition (EMD)

and a vector of Hurst exponent coefficients. The scheme

is investigated considering real acoustic noisy signals with

different non-stationarity degree and signal-to-noise ratio

(SNR). The results demonstrate that the EMD-based noise

detector enables a better separation between the clean and

noisy signals when compared to the competing methods. It

also leads to an average SNR improvement of 4.4 dB for the

resulting enhanced signals.

Index Terms— empirical mode decomposition, Hurst ex-

ponent, acoustic noise detection, index of non-stationarity.

1. INTRODUCTION

Wireless technology is a reality in nowadays professional and

personal lives. In the last years, smartphones, tablets and lap-

tops powered with advanced acoustic sensors, processors, and

high-speed connection became very popular. This emerging

scenario boosted the signal processing research to support the

fast growing needs of the diversity of applications that un-

derline these devices. Moreover, a broad set of these applica-

tions is applied in real acoustic noisy environment (restaurant,

street, traffic, train). Consequently, noise detection is a main

issue to proceed the acoustic scene analysis, signal process-

ing and classification. Furthermore, real acoustic signals are

generally nonlinear and non-stationary.

The empirical mode decomposition (EMD) [1] is a new

concept and a powerful tool for signal processing in time do-

main. The data-driven method is devoted to treat nonlinear

and non-stationary sequences. Its multiresolution analysis de-

composes a signal into a series of oscillatory intrinsic mode

functions (IMF) and a residual component. Different from the

traditional wavelets, a set of a priori fixed basis functions is

not required for the decomposition process. Instead, the IMFs
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are completely based on the local properties of the input data,

which guarantees its adaptivity to any kind of signal. In [2],

the authors showed that when applied to fractional Gaussian

noises, EMD behaves like a dyadic filterbank with overlap-

ping band-pass filters. Due to these features, EMD is being

investigated in many areas, e.g., biomedical, meteorological,

ocean engineering, and seismic.

This work proposes a scheme to detect noise components

from a corrupted acoustic signal collected in a real environ-

ment with different non-stationarity degree. In this proposal,

the EMD is firstly applied to the noisy signal. Then, the noise

components of each IMF are identified on a frame-by-frame

basis by a vector of Hurst scaling exponent [3]. The extrac-

tion of those detected noise components enables further re-

construction of a target signal.

The evaluation experiments are conducted considering

real target signals and acoustic noises with different indices

of non-stationarity (INS) [4]. Two baseline detection methods

are considered for the investigation of the proposed approach:

variance [5] and standardized mean [6]. The Hurst-based

noise detection also leads to substantial quality improve-

ment for most of the noisy scenarios. The results show that

the proposed method outperforms the baseline in terms of

signal-to-noise ratio and segmental SNR (SegSNR).

2. ACOUSTIC NOISE DETECTION METHOD

The first step of the proposed method refers to the decom-

position of the noisy signal. Based on the Hilbert-Huang

transform (HHT) [1], EMD locally analyzes a signal x(t) be-

tween two consecutive extrema (minima or maxima). While

a fast oscillation (high-frequency) defines a detail function,

the remaining slow oscillation (low-frequency) indicates a lo-

cal trend or residual. By definition, an IMF has zero mean

and all its local maxima and minima are positive and nega-

tive, respectively. The first detail function, d1(t), is obtained

from all the consecutive extrema of x(t), such that x(t) =
d1(t) + a1(t), where a1(t) denotes the first local trend. In

general, the separation between the fast and slow oscillations

is repeated over the residual of order k− 1 to obtain the detail

Authorized licensed use limited to: INSTITUTO MILITAR DE ENGENHARIA. Downloaded on April 08,2021 at 12:42:12 UTC from IEEE Xplore.  Restrictions apply. 



0 10 20 30 40 50 60 70 80 90 100
-0.3

0

0.3
sp

ee
ch

 si
gn

al

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

IM
F 1

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

IM
F 2

0 10 20 30 40 50 60 70 80 90 100
-0.1

0

0.1

IM
F 3

0 10 20 30 40 50 60 70 80 90 100
-0.1

0

0.1

IM
F 4

0 10 20 30 40 50 60 70 80 90 100
-0.1

0

0.1

IM
F 5

time [ms]

Fig. 1. Amplitude of a clean speech signal and the corre-

sponding five IMFs.

and the local trend of order k, i.e., ak−1(t) = dk(t) + ak(t).
The decomposition stops when the current residual may no

longer be decomposed into new IMFs.

2.1. EMD algorithm

The EMD algorithm can be described as follows:

1. Set k = 1 and initialize the variable a0(t) = x(t);

2. Identify all local minima and maxima of ak−1(t);

3. Obtain the upper (emax(t)) and lower (emin(t)) en-

velopes by cubic splines interpolation of the local max-

ima and minima, respectively;

4. Compute the local trend as the average between the en-

velopes, i.e., ak(t) = (emin(t) + emax(t)) /2;

5. Calculate dk(t) = ak−1(t) − ak(t) as the new detail

function;

6. Set k = k + 1 and iterate steps 2-5 on the new residual

local trend ak(t).

If a detail function dk(t), obtained in step 5, does not fol-

low the IMF definition, steps 2 to 5 are repeated with dk(t) in

place of ak−1(t). This process, called sifting, is repeated until

a new dk(t) can finally be considered as an IMF. The EMD

algorithm assures completeness of the analyzed signal, i.e.,

x(t) =
∑K

k=1 IMFk(t) + r(t) , where K is the total number

of IMFs, IMFk(t) denotes the k-th mode and r(t) = aK(t) is

the last residual. A detailed description of the EMD method,

its refined version and application to signal enhancement can

be found in [7].

Figs. 1 and 2 illustrate an example of the first five IMFs

obtained from the decomposition of a clean and a noisy
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Fig. 2. Amplitude of a noisy speech signal corrupted with car

traffic noise and the corresponding five IMFs.

speech signal, respectively. The clean signal corresponds to

a speech segment collected from the TIMIT [8] database. A

real car traffic1 noise is selected to corrupt the speech segment

with SNR of 5 dB. Note that the first mode is composed of

faster oscillations when compared to the second IMF, which

has faster oscillations than the third one, and so on. It can

also be seen from Figs. 1 and 2 that the first two IMFs are

quite similar in the clean and the noisy signal. However, the

effects of the acoustic noises are noticeable after the third

IMF. This is an indication that EMD is suitable for the noise

components detection.

2.2. Noise Components Identification

The second step of the detection scheme consists in the iden-

tification of the noise components of each IMF by the estima-

tion of a vector of Hurst exponent coefficients. The main goal

is to define an IMF index L (1 ≤ L ≤ K) such that the noise

components are concentrated at IMFs with indices k ≥ L.

The Hurst exponent (0 ≤ H ≤ 1) was chosen for the IMFs

selection since it expresses the scaling degree of a signal and

is related to its power spectral characteristics, i.e, it can be

denoted as a time-frequency parameter. For example, if x(t)
is a white noise, its power spectral density is approximately

constant and H = 1/2. When low frequencies are promi-

nent, then H > 1/2. If the energy is mostly concentrated

at the high frequencies then H < 1/2. Due to such charac-

teristics, the Hurst exponent was proposed in [9] to compose

a speech feature vector and successfully applied to speaker

recognition. In this work, the wavelet-based estimator [10]

was adopted to obtain the H values of the IMFs on a frame-

by-frame basis.

1Available at http://www.freesound.org.
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Fig. 3. Index of non-stationarity of acoustic signals: (a)

speech, (b) babble, and noises: (c) car traffic, (d) chainsaw,

and (e) jackhammer. The dashed lines indicate the values of

the threshold γ for the stationarity tests.

Since the proposed detection scheme is mainly concerned

with non-stationary signals, the index of non-stationarity

(INS) [4] is adopted to objectively examine and quantify

the non-stationarity degree of the acoustic noises and tar-

get signals. The stationarity test is conducted by comparing

the spectral components of the signal to a set of stationary

references called surrogates. For each window length Th,

a threshold γ is defined for the stationarity test. Thus, the

signal is considered as non-stationary if INS > γ.

In this work, three acoustic noises (car traffic, chainsaw2

and jackhammer2) are used to corrupt two target signals:

speech (the same used in Figs. 1 and 2) and babble3. The

signals and noises have 3 s time duration and are sampled at 8

kHz. The INS values obtained from these signals and noises

are depicted in Fig. 3 (continuous lines). The time scale

is the ratio of the length of the short-time spectral analysis

(Th), and the total time duration (T = 3 s) of the sample

sequences. From the INS results, the target signals and noises

are here defined as: speech signal and chainsaw noise are

highly non-stationary (HNS; INS ≥ 80); jackhammer noise is

non-stationary (NS; INS ≥ 40); babble signal and car traffic

noise are moderately non-stationary (MNS; INS < 20). The

INS of the speech signal corrupted with the three noises with

SNR of 5 dB are shown in Fig. 4. It can be seen that these

noisy signals are highly non-stationary, i.e., INS ≥ 80, even

for the car traffic noise (MNS).

Fig. 5 shows the H average values estimated from IMFs

segments of 32 ms (rectangular window with 256 samples).

The H results of the target clean speech signal are presented

in the dashed lines. The continuous lines correspond to the

speech signals corrupted by the car traffic and jackhammer

noises with SNR of 5 dB. It can be observed that the noise

2Available at http://www.freesfx.co.uk.
3Collected from the NOISEX database [11].
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Fig. 4. Index of non-stationarity of the speech signal cor-

rupted with the acoustic noises with SNR of 5 dB: (a) car

traffic, (b) chainsaw, and (c) jackhammer.
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Fig. 5. H values estimated from the IMFs corresponding to

speech signal corrupted by acoustic noises (continuous lines)

with SNR of 5 dB: (a) car traffic and (b) jackhammer. Dashed

lines refer to the clean speech.

components differ from the clean speech after the fourth

IMF. As expected, this corresponds to H > 1/2, i.e., low-

frequency noise. This demonstrates that the Hurst exponent

is a good criterion for the acoustic noise detection.

Additionally, for the evaluation of the proposed noise

detection scheme, the variance [5] and standardized mean

(StdMean) [6] are adopted as baseline criteria. The variance-

based criterion identifies the first IMF with index L (L ≥ 4)

where the variance is greater than the adjacent modes, i.e.,

Var [IMFL(t)] > Var [IMFL−1(t)] and Var [IMFL(t)] >
Var [IMFL+1(t)]. The noise components are assumed to

be concentrated at the IMFs with index k ≥ L. The Std-

Mean is estimated from each IMF and is defined as the ration

of the mean and the standard deviation. In this work, the

StdMean-based criterion identifies L as the first index for

which StdMean is greater than the root mean square of the

standardized mean of the first four modes.

3. SIGNAL RECONSTRUCTION

Since the noise components are assumed to be mostly concen-

trated at the IMFs with H > 1/2 (low-frequency), the target

signal reconstruction will be composed with the remaining

modes (H < 1/2). After the decomposition of the noisy

signal, each IMF is divided into Q short-time frames. For

each frame q, the Hurst exponent defines an index L such

that the target signal frame x̂q(t) is reconstructed using only

the first L − 1 modes., i.e., x̂q(t) =
∑L−1

k=1 IMFq,k(t), where

IMFq,k(t) is the q-th frame of the k-th IMF. The target sig-

nal is finally given by the concatenation of all Q frames. In
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Fig. 6. The average values of (a) H , (b) variance and (c) Std-

Mean estimated from the IMFs of the clean and noisy speech

signals (SNR = 5 dB).

this work, the target signals are also reconstructed with the

baseline StdMean [5] and variance [6] criteria.

In order to investigate the noise interference reduction of

the proposed and baseline approaches, the target signals are

reconstructed and further evaluated in terms of two signal

quality measures: SNR and SegSNR. SegSNR is defined as

SegSNR = 10
Q

∑Q

q=1 log
∑Td

t=1
x2

q(t)
∑Td

t=1
[xq(t)−x̂q(t)]

2
, where Q is the

total number of frames, Td is the frame length (in samples),

and xq(t) and x̂q(t) represent the q-th frame of the clean and

reconstructed target signals, respectively,

4. EXPERIMENTS AND RESULTS

In this Section, the Hurst, variance and StdMean approaches

are compared for acoustic noise perception. The IMFs selec-

tion and the signal reconstruction are performed with frame

length of 32 ms. Fig. 6 illustrates the noise detection obtained

with the Hurst exponent vector and the baseline criteria. The

H , variance and StdMean average values are estimated from

each IMF of the clean and noisy versions of the speech sig-

nal, considering SNR of 5 dB. Note from Fig. 6(a) that the H
values of the clean and noisy signals are clearly different after

the third IMF. This indicates that the proposed method is able

to detect the noise components from the three noisy signals.

From Fig. 6(b) it can also be seen that variance peaks appear

at the sixth and fifth modes for the jackhammer (NS) and car

traffic (MNS) noises, respectively. However, there is no vari-

ance peak after the fourth IMF for the chainsaw noise (HNS),

which can lead to a noise detection error. Finally, the Std-

Mean values in Fig. 6(c) indicate that the noise components

can only be identified after the fifth IMF for any noisy signal.

These results reinforce that the separation of the clean speech

and noisy signals is clearly more evident with the proposed

detection method, even for the chainsaw noise (HNS).

The SNR and SegSNR are here examined for the target

signal reconstruction with the proposed and baseline noise

detection methods. The target signals are corrupted consid-

ering three SNR values: -5 dB, 0 dB and 5 dB. Tables 1 and 2

present the SNR and the SegSNR improvement results com-

puted from the reconstructed signals using the Hurst, variance

Table 1. SNR (dB) obtained with the noise selection criteria.
speech signal babble signal

Noise SNR Hurst Variance StdMean Hurst Variance StdMean

car traffic

(MNS)

-5 6.7 -4.2 -4.0 2.5 -4.9 -4.0

0 9.9 2.2 1.4 3.7 0.6 1.1

5 12.9 7.5 6.7 5.3 4.4 4.6

jackhammer

(NS)

-5 3.8 -0.4 -1.5 1.6 -2.3 -3.1

0 7.6 5.6 3.2 4.3 2.4 1.5

5 11.7 9.7 7.8 6.7 5.1 5.4

chainsaw

(HNS)

-5 -3.4 -4.7 -4.7 -4.3 -4.9 -4.8

0 0.8 0.4 0.3 0.0 -0.4 -0.3

5 5.3 5.2 5.2 4.9 3.7 3.8

Table 2. SegSNR improvement (dB) obtained with the noise

selection criteria.
speech signal babble signal

Noise SNR Hurst Variance StdMean Hurst Variance StdMean

car traffic

(MNS)

-5 5.2 1.2 0.9 4.8 0.3 0.9

0 4.1 1.8 1.1 2.2 0.5 0.7

5 2.4 1.4 1.0 0.0 -0.5 -0.4

jackhammer

(NS)

-5 4.6 3.6 2.4 4.7 3.1 2.3

0 3.4 3.3 1.8 3.0 2.1 1.4

5 2.2 1.9 1.1 0.9 0.1 0.2

chainsaw

(HNS)

-5 0.7 0.3 0.2 0.2 0.0 0.0

0 0.3 0.2 0.2 0.0 -0.6 -0.3

5 0.1 0.1 0.1 0.2 -1.1 -0.8

and StdMean noise detection criteria. The SegSNR is com-

puted with frame length of 25 ms. The highlighted values

correspond to signal quality improvement greater than 1 dB.

The speech and babble target signals are considered in these

experiments. The SNR results of the proposed scheme sub-

stantially outperforms the baseline methods for most of the

noise conditions. The best SNR values are obtained for the car

traffic noise (MNS), where the SNR improvement achieves

11.7 dB for the target speech signal corrupted with SNR of -5

dB. For this same condition, the StdMean and variance crite-

ria achieve SNR gain of 0.8 dB and 1.0 dB, respectively. The

Hurst-based solution provides the best SNR results even for

the highly non-stationary chainsaw noise. Considering the

SegSNR measure, the Hurst-based solution reaches the best

results for all the noisy conditions. For example, a SegSNR

gain of 5.2 dB is achieved for the speech signal corrupted

with the car traffic with SNR of -5 dB. These results empha-

size that the proposed scheme is suitable for the detection of

real non-stationary acoustic noises.

5. CONCLUSION

This paper presented a time-domain noise detection scheme

for signals corrupted by non-stationary acoustic noise. The

proposal is derived from a two steps procedure composed by

the empirical mode decomposition and a Hurst exponent vec-

tor. The results demonstrated that the proposed method is

suitable for non-stationary noise detection. A SNR gain of 1.6

dB is obtained for the highly non-stationary chainsaw noise

source. Moreover, it can be very promising for speech en-

hancement solutions [5, 7, 12–14].
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