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Abstract: This paper investigates the fusion of Mel-frequency cepstral coefficients (MFCC) and pH features, combined
with the multicondition training (MT) technique based on artificial colored spectra noises, for noise robust
speaker verification. Theα-integrated Gaussian mixture models (α-GMM), an extension of the conventional
GMM, are used in the speaker verification experiments. Five real acoustic noises are used to corrupt the
speech signals in different signal-to-noise ratios (SNR) for tests. The experiments results show that the use of
MFCC + pH feature vectors improves the accuracy of speaker verification systems based on single MFCC. It
is also shown that the speaker verification system with the MFCC + pH fusion and theα-GMM with the MT
technique achieves the best performance for the speaker verification task in noisy environments.

1 INTRODUCTION

Over the last decades, automatic speaker verifica-
tion or authentication has been demonstrated to be
an interesting solution for applications with security
concerns, such as access control, data security and
forensic investigations (Naik, 1990) (Campbell et al.,
2009). The main goal of a speaker verification task is
to accept or reject a claimed identity.

Speaker verification systems are composed of a
training and a testing phase. The training phase has
three steps: speech acquisition/pre-processing, fea-
tures extraction and speaker modeling. In the test-
ing phase, the pre-processing and features extraction
steps are also present. Then, the extracted features are
compared to the speakers models and the appropriate
decision is taken.

The MFCC (Davis and Mermelstein, 1980)
and GMM-UBM (universal background model)
(Reynolds and Rose, 1995) based system achieves
high recognition accuracies for clean speech
(Reynolds, 1995). However, its performance can
be severely degraded when the speech signals are
corrupted by acoustic noise (Ming et al., 2007).
This paper proposes the fusion of the MFCC and
pH (Sant’Ana et al., 2006) features combined
with a colored-noise-based multicondition training
(Colored-MT) technique (Zão and Coelho, 2011) to
improve the noise robustness of speaker verification

tasks. The proposed solution is evaluated without any
speech enhancement (Boll, 1979), orthogonalization
(Fukunaga, 1990), missing-feature (Cooke et al.,
2001) or score-normalization (Bimbot et al., 2004)
techniques. The results are presented for the GMM
andα-GMM (Wu et al., 2009) classifiers.

For the verification experiments the speech utter-
ances are collected from the TIMIT database (Fisher
et al., 1986). The speech signals are corrupted by the
acoustic noises (Babble, Destroyer, Factory, Leop-
ard and Volvo) obtained from the NOISEX-92 (Varga
and Steeneken, 1993) database, considering SNR val-
ues of 5, 10, 15 and 20 dB. The experiments results
show that the proposed solution is very promising for
speaker verification in noisy environments.

The remainder of this work is organized as fol-
lows. Section 2 provides the basic concepts of a
speaker verification system, including the speech fea-
tures and classifiers adopted in this work. This Sec-
tion also presents the colored-noise-based multicon-
dition training technique for theα-GMM classifier.
Section 3 describes the speaker verification experi-
ments conducted in different noisy environments. The
results are presented and discussed in the same Sec-
tion. Finally, Section 4 concludes this work.
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2 SPEAKER VERIFICATION

Given a claimed identity of a speakerS and an ob-
served speech segment (Y), the verification task can
be stated as a hypothesis test. In fact, the system ac-
cepts one of the following statements as true:

{

H0: Y belongs to speakerS.
H1: Y does not belong to speakerS.

To decide whether the observed speech segment
belongs or not to the claimed speaker, the following
log-likelihood ratio test is generally applied:

logp(Y|λS)− logp(Y|λUBM)

{

≥ θ, acceptH0
< θ, acceptH1

(1)
In (1), p(Y|λS) is the probability density function

(pdf) ofY given it was spoken by the claimed speaker
S, modeled byλS. In the same way,p(Y|λUBM) is
the pdf of Y given that it is not from the claimed
speaker, i. e., the speech segment belongs to an in-
truder. λUBM is generally modeled by GMM-UBM.
The choice of the decision thresholdθ is a tradeoff
between the false rejection (FR) and false acceptance
(FA) errors. These probabilities are usually evaluated
by detection error tradeoff (DET) curves. The equal
error rate (EER) corresponds to the point where the
FR and FA probabilities are equal.

2.1 Speech Features

Speech features are generally computed or extracted
using Hamming windows with length of 20 to 30 ms
and 50% of frame period overlapping. From each
frame, a set of coefficients is obtained to form a
speech feature vector.

2.1.1 MFCC

Usually, MFCC is applied as speech feature in
speaker recognition systems since it is considered a
good representation of the human auditory system.
They are extracted using Mel scale band filters. The
Mel-frequency scale is related to the linear-frequency
scale as:

fMEL = 1127· log

(

1+
fHz

700

)

(2)

The MFCC coefficients are then calculated by the
discrete cosine transform (DCT):

cd =
F

∑
k=1

Sk ·cos

[

d

(

k−
1
2

)

π
F

]

, d = 1,2, . . . ,D ,

(3)
whereF is the number of filters in the Mel-frequency
filterbank,Sk is the log-energy output of thekth filter,
and D is the number of cepstrum coefficients. The
MFCC extraction schematic is depicted in Fig. 1.
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Figure 1: Representation of the MFCC extraction (FFT: fast
Fourier transform).

2.1.2 pH

The pH feature was proposed in (Sant’Ana et al.,
2006) and consists of a vector of Hurst (H) param-
eters. The Hurst parameter (0≤ H ≤ 1) expresses the
time-dependence or scaling degree of the speech sig-
nal.

Let the speech signal be represented by a stochas-
tic processX(t), with the normalized autocorrelation
coefficient function defined by

ρ(k) =
Cov[X(t),X(t + k)]

Var[X(t)]
. (4)

The Hurst parameter is defined by the decaying rate
of ρ(k), whose asymptotic behavior is given by

ρ(k)∼ H(2H −1)k2(H−2), k→ ∞ . (5)

The Wavelet-based Multi-dimensional Estimator
(M-dim-wavelets) (Sant’Ana et al., 2006) was pro-
posed as a pH feature extractor and is based on the es-
timator described in (Veitch and Abry, 1999). It uses
the discrete wavelet transform (DWT) to successively
decompose a sequence of speech samples into the ap-
proximation (a( j,k)) and detail (d( j,k)) coefficients,
where j is the decomposition scale andk is the coeffi-
cient index of each scale. From each detail sequence,
d( j,k), generated by the filter bank in a given scalej,
a Hurst parameterH j is estimated. The set ofH j val-
ues and the value obtained for the entire speech signal
(H0) compose the pH feature. Fig. 2 shows an ex-
ample of the M-dim-wavelets estimator considering 3
decomposition stages. The M-dim-wavelets estima-
tor can be described in the following steps (Sant’Ana
et al., 2006):

1. Wavelet decomposition: the DWT is applied
to the speech samples generating the detail se-
quencesd( j,k).

2. Variance estimation of the detail coefficients: for
each scalej, the varianceσ2

j = (1/n j)∑k d( j,k)2

is evaluated, wheren j is the number of available
coefficients for each scalej. It can be shown
(Veitch and Abry, 1999) thatE[σ2

j ] = cγ j2H−1,
wherecγ is a constant.

3. pH estimation: ploty j = log2(σ2
j ) versusj. Using

a weighted linear regression, one get the slopea
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Figure 2: An example of the pHM dim waveletsestimator with 3 decomposition stages.

of the plot and the Hurst parameter is estimated as
H = (1+a)/2. Apply the Hurst estimator to the
entire speech signal (H0) and then to each of theJ
detail sequences obtained in the first step (see Fig
2). The resulting(J+ 1) H values compose the
pH feature.

The Daubechies wavelets filters (Daubechies, 1992)
are used in the estimation of the pH vectors. The
multi-resolution analysis (Vetterli and Kovacevic,
1995) adopted in the DWT of the Hurst estimator is
a powerful theory that enables the detail and approx-
imation coefficients to be easily computed by a sim-
ple discrete time convolution. It is important to note
that the linear computational complexity of the pyra-
midal algorithm to obtain the DWT isO(n) where
n is the signal samples length, while the FFT (fast
Fourier transform), used to obtain the Mel-cepstral
coefficients, isO(nlog(n)).

2.2 α-GMM

The α-integrated GMM was proposed in (Wu et al.,
2009) as an extension of the conventional GMM for
speaker classification. The authors were motivated by
the fact that human brains must use complex ways of
information integration, such as theα-integration, and
not only the linear combination.

Given a set of Gaussian densitiesbi(~x) and corre-
sponding weightswi , i = 1, . . . ,M, theα-GMM is de-
fined as theα-integration of the densities (Wu et al.,
2009):

p(~x|λS) = c f−1
α

{

M

∑
i=1

wi fα [bi(~x)]

}

, (6)

where

fα [bi(~x)] =

{

( 2
1−α

)

bi(~x)(1−α)/2 , α 6= 1

log[bi(~x)] , α = 1
, (7)

f−1
α (y) =

{

(

1−α
2 y

)
2

1−α , α 6= 1

exp(y) , α = 1
, (8)

andc is a normalization constant.
Note that (6) can be rewritten as

p(~x|λS) = c

[

M

∑
i=1

wi bi(~x)
1−α

2

]
2

1−α

. (9)

As in the regular GMM, theα-GMM of each
speakerS is completely parametrized by the mean
vectors (~µi), covariance matrices (Ki) and the weights
of the Gaussian densities:

λS= {wi ,~µi ,Ki | i = 1, . . . ,M} . (10)

Let ΦS denote the training speech segment of
speakerS, andX the extracted feature matrix com-
posed of feature vectors~xt , t = 1, . . . ,Q. The parame-
ters ofλS are estimated using the adapted expectation-
maximization (EM) algorithm (Wu, 2009) as to max-
imize the likelihood function

p(X|λS) =
Q

∏
t=1

p(~xt |λS) . (11)

It can be noticed from (9) that the GMM is a
particular case of theα-GMM, which corresponds to
α =−1. By choosing values ofα smaller than -1, the
α-GMM classifier emphasizes the larger probability
values, and de-emphasizes the smaller ones. The idea
of this work is to use this property to compensate the
training and testing mismatch caused by environmen-
tal acoustic noises.

2.3 Multicondition Training based on
Colored Noises

This Section presents the colored-noise-based multi-
condition training technique adopted in this work for
the speaker verification task. As introduced in (Zão
and Coelho, 2011), artificial noises are generated with
Gaussian distribution and power spectral densities
(PSD) characterized by the shapeS( f ) ∝ 1/ f β, with
β ∈ [0,2]. The PSD shapes are obtained by filtering
a Gaussian white noise sequence using the Al-Alaoui
(Al-Alaoui, 1993) transfer function.
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Table 1: EER (%) obtained from speaker verification tests
with MFCC feature vectors and the GMM classifier.

Noise SNR Average
20 dB 15 dB 10 dB 5 dB

Clean 1.48
Babble 2.85 5.06 11.20 25.00 11.03
Destroyer 4.84 12.14 23.70 37.16 19.46
Factory 5.04 10.13 19.94 30.98 16.52
Leopard 4.43 8.35 14.92 23.92 12.91
Volvo 4.60 7.40 13.26 20.51 11.44
Average 4.35 8.62 16.60 27.51 14.27

For each speakerS, multiple copies of the clean
training utteranceΦS are corrupted by the artificial
colored noises, resulting in multicondition data sets
Φl

S (l = 1, . . . ,m). Following the procedure addressed
in Section 2.2,m α-GMM (λl

S) for speakerSare ob-
tained from the corrupted data setsΦl

S. In analogy to
(10), each of these models are parametrized by

λl
S= {wl

i ,~µ
l
i ,K

l
i | i = 1, . . . ,M} , l = 1, . . . ,m.

(12)
The colored multicondition training model (ΛS) of

speakerS is given by the collection of all the parame-
ters estimated in (12), i. e.,

ΛS= {wl
i ,~µ

l
i ,K

l
i | l = 1, . . . ,m; i = 1, . . . ,M } . (13)

In order to adapt the Colored-MT to theα-GMM
classifier, the probabilityp(~x|λS) is adjusted to follow
theα-integration of allm×M Gaussian densities:

p(~x|ΛS) = c′
[

m

∑
l=1

M

∑
i=1

wl
i bl

i (~x)
1−α

2

]
2

1−α

, (14)

wherec′ is a new normalization constant.

3 EXPERIMENTS AND RESULTS

The speaker verification experiments are conducted
with a subset composed of 168 speakers (106 males
and 62 females) of the TIMIT database (Fisher et al.,
1986). The speech database is composed of ten utter-
ances per speaker, with sampling rate of 16 kHz and
average duration of 3 seconds. The speech segments
of ten speakers (5 males and 5 females) are concate-
nated to obtain the UBM. From each of the 158 re-
maining speakers, eight utterances are separated to
train the models, and the other two are used for tests.

Five environmental acoustic noises (Babble, De-
stroyer, Factory, Leopard and Volvo), collected from
NOISEX-92 database (Varga and Steeneken, 1993),
are used to corrupt the test speech utterances. The
values of SNR adopted for the tests are 5, 10, 15 and
20 dB, and also the clean speech.

Table 2: EER (%) obtained from speaker verification tests
with MFCC + pH feature vectors and the GMM classifier.

Noise SNR Average
20 dB 15 dB 10 dB 5 dB

Clean 1.31
Babble 2.85 4.97 11.53 23.55 10.72
Destroyer 4.75 11.17 22.73 35.76 18.60
Factory 3.91 7.38 13.92 25.63 12.71
Leopard 4.11 7.09 14.44 22.45 12.02
Volvo 3.16 5.78 9.49 16.14 8.65
Average 3.76 7.28 14.42 24.71 12.54

Two sets of experiments are presented in this
work. In the first one, the speaker verification task
is evaluated with theα-GMM classifiers considering
the MFCC and the fusion of MFCC and pH as speech
feature vectors. All theα-GMM are obtained with
32 Gaussian densities. The conventional GMM is a
particular case of theα-GMM classifier (α = −1).
The second set of experiments are conducted with
the MFCC + pH features fusion combined with the
Colored-MT technique and theα-GMM classifier.

3.1 MFCC and pH Fusion

The MFCC feature matrix is composed by 12-
dimensional vectors, obtained from frames of 20 ms
and 50% of frame overlapping. It is adopted a Mel-
scale filterbank composed by 26 filters and a pre-
emphasis factor of 0.97. The pH are estimated from
three consecutive speech frames using Daubechies
wavelets filters (Daubechies, 1992) with 12 coeffi-
cients, using scale range from 2 to 8. A total ofJ = 8
decomposition scales are considered to obtain theH j
values. Including the estimated values ofH0 from
the original speech signal, 9-dimensional pH vectors
are extracted to compose the feature matrices. Thus,
in the experiments with the MFCC + pH fusion, the
speech feature vectors have 21 components.

3.1.1 GMM

Tabs. 1 and 2 show the EER results obtained from
the speaker verification experiments considering the
GMM with single MFCC and MFCC + pH feature
vectors, respectively. Note that, compared to single
MFCC, the MFCC + pH fusion achieves better accu-
racy, i. e., lower EER values, for all the five noise
sources and also for clean speech. The contribution
of the pH feature achieves 6.02% of absolute EER re-
duction for test utterances corrupted by the Factory
noise with SNR of 10 dB. The average EER results
considering all five noises is reduced from 14.27%
to 12.54%, which represents 1.73% of absolute im-
provement. Fig. 3 illustrates the DET curves obtained
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Table 3: EER (%) obtained of speaker verification tests with theα-GMM classifier for different values ofα.

Noise SNR
MFCC MFCC + pH

α =−4 α =−6 α =−8 α =−4 α =−6 α =−8

Babble

20 dB 2.97 3.52 2.54 3.05 3.00 3.48
15 dB 4.94 5.06 4.55 5.06 5.06 5.35
10 dB 12.03 12.12 11.08 11.08 11.39 12.44
5 dB 26.58 25.00 24.37 22.47 24.03 24.07

Average 11.63 11.43 10.63 10.41 10.87 11.34

Destroyer

20 dB 5.29 5.38 4.65 5.25 4.72 5.45
15 dB 12.08 11.70 11.71 12.34 10.30 12.34
10 dB 23.42 22.54 22.15 22.47 23.56 23.32
5 dB 34.81 34.49 34.72 35.76 38.03 37.44

Average 18.90 18.53 18.31 18.96 19.15 19.64

Factory

20 dB 5.06 5.18 5.06 4.18 4.04 4.98
15 dB 10.50 10.13 10.35 8.22 7.79 8.49
10 dB 20.57 19.30 19.94 15.05 15.19 15.82
5 dB 30.66 30.35 29.11 25.26 26.27 25.85

Average 16.70 16.24 16.12 13.18 13.32 13.79

Leopard

20 dB 4.71 4.75 4.36 4.11 4.75 4.84
15 dB 9.81 8.93 8.82 7.41 7.59 8.23
10 dB 17.24 17.12 16.46 14.45 14.24 14.56
5 dB 25.85 24.68 25.58 21.20 22.15 23.10

Average 14.40 13.87 13.80 11.79 12.18 12.68

Volvo

20 dB 4.75 4.75 4.53 3.80 3.16 3.85
15 dB 8.21 8.10 9.28 5.70 6.09 6.75
10 dB 13.93 13.24 15.11 10.24 10.38 10.79
5 dB 20.25 20.57 21.20 16.77 16.38 16.77

Average 11.79 11.91 12.53 9.13 9.01 9.54
Average 14.68 14.40 14.28 12.69 12.91 13.40
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Figure 3: The DET curves obtained with 12 MFCC (red
lines) and 12 MFCC + 9 pH (blue lines) with the GMM
classifier for test speech signals corrupted by the Leopard
noise with SNR of 20, 15 and 10 dB.

with the MFCC + pH fusion (blue lines), and with the
single MFCC (red lines) for the Leopard noise and
SNR values of 20, 15 and 10 dB.

3.1.2 α-GMM

This Section presents the results obtained with the
single MFCC and MFCC + pH feature vectors con-
sidering theα-GMM with values ofα: -4, -6 and -8.

Tab. 3 shows the EER values obtained with the
testing speech utterances corrupted by the five acous-
tic noises. It can be seen that the best average accu-
racy was achieved withα = −4 and for the MFCC
+ pH fusion. This performance was achieved for all
acoustic noises except for the Destroyer. The best av-
erage EER improvement of 3.52% was achieved for
the Factory noise. It is important to notice that the
α-GMM-based system does not outperform the con-
ventional GMM (α = −1) approach (refer to Tabs. 1
and 2).

Fig. 4 illustrates the DET curves for the Fac-
tory noise with SNR of 15 dB obtained for the GMM
(α = −1) andα-GMM classifiers. The dashed (bot-
tom) lines indicate the operating points obtained with
the fusion of MFCC + pH features, while the continu-
ous (top) lines are related to the single MFCC feature.
Note that, considering each set of speech features, the
GMM-based systems (red curves) achieve better per-
formance than those based on theα-GMM classifier.
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α-GMM classifier for test speech corrupted with Factory
noise and SNR of 15 dB.

3.2 Colored-MT Technique

Following the procedure defined in (Zão and Coelho,
2011), three artificial noises are generated for the
Colored-MT technique, with colored spectra defined
by the PSD decaying rate:β = 0 (white),β = 1 (pink)
andβ = 2 (brown). These noises are used to corrupt
all the speech segments available for training with
SNR of 15 dB, including the UBM. The MFCC + pH
feature matrices, extracted from each of the corrupted
training utterances, are used to obtain theα-GMM.
Thus, a total of 3× 32= 96 Gaussian densities are
stored for each speaker. Tab. 4 presents the EER re-
sults obtained in the experiments with the Colored-
MT technique withα-GMM classifier. The results are
presented considering the values ofα: -1, -4, -6 and
-8.

The use of GMM with the Colored-MT leads to
an average EER of 6.96% (Tab. 4). This means an
absolute improvement of 5.58% in the EER when
compared to the accuracy results with the MFCC
+ pH vectors and the GMM without the multicon-
dition training. It can also be observed that with
the Colored-MT theα-GMM classifier withα = −6
achieves the best verification accuracy, for all the five
noise sources.

4 CONCLUSIONS

This paper examined the use of the fusion of the
MFCC and pH speech features and the colored-noise-
based multicondition training technique for noise ro-
bust speaker verification. The GMM andα-GMM

Table 4: EER (%) of speaker verification experiments with
MFCC + pH features with the Colored-MT technique and
theα-GMM classifier.

Noise SNR α-GMM classifier
α =−1 α =−4 α =−6 α =−8

Babble

20 dB 3.80 2.85 3.48 3.03
15 dB 4.11 3.82 3.98 3.48
10 dB 6.52 6.33 5.92 6.27
5 dB 12.34 12.34 12.28 12.97

Average 6.69 6.33 6.41 6.44

Destroyer

20 dB 6.95 6.65 6.01 6.26
15 dB 11.25 11.08 10.37 10.44
10 dB 19.43 18.35 18.04 17.72
5 dB 30.38 30.91 29.69 28.39

Average 17.00 16.75 16.03 15.70

Factory

20 dB 1.58 1.58 1.90 1.75
15 dB 1.58 2.17 1.74 1.77
10 dB 3.16 3.34 2.95 3.41
5 dB 7.02 6.96 6.96 6.88

Average 3.34 3.51 3.39 3.45

Leopard

20 dB 2.41 2.45 2.25 2.85
15 dB 2.90 3.28 2.99 3.14
10 dB 5.56 6.52 5.44 6.01
5 dB 12.26 13.61 11.70 13.29

Average 5.78 6.46 5.59 6.32

Volvo

20 dB 1.82 1.56 1.58 1.90
15 dB 1.36 1.26 1.54 2.14
10 dB 1.58 1.77 1.58 1.90
5 dB 3.16 2.85 2.85 3.16

Average 1.98 1.86 1.89 2.28
Average 6.96 6.98 6.66 6.84

were considered for the speaker and intruder mod-
eling. The experiments were conducted with a sub-
set of the TIMIT database corrupted with five acous-
tic noises from NOISEX-92, with different values of
SNR. The results showed that the MFCC + pH vec-
tors and theα-GMM under multicondition training
achieved the best improvement for the speaker veri-
fication task in noisy environments.
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