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Abstract—This paper presents the study of four objective
intelligibility measures to evaluate the performance of speech
enhancement techniques. The objective measures have high cor-
relation with the speech intelligibility rates obtained in subjective
listening tests. Four noise reduction algorithms are applied to
enhance the speech signals corrupted by real highly nonstationary
acoustic noises. The results show that, for most of the noise
conditions, the best intelligibility results are obtained by the
speech enhancement technique based on the empirical mode
decomposition. Moreover, the Wiener filtering based technique
also achieves interesting intelligibility gain for the highly nonsta-
tionary noises.

Index Terms—speech enhancement, objective intelligibility
measures, nonstationary noise.

I. INTRODUCTION

The degradation of speech signals due to the presence of
acoustic noises is still a major problem in the speech process-
ing area. For many decades, speech enhancement techniques
have been proposed to compensate or reduce the effects of
acoustic noises [1], [2], [3]. Most of them apply the short-
time Fourier transform (STFT) to obtain an estimation of
the noise power spectrum. The noise components are then
suppressed from the noisy speech signal spectrum before the
enhanced version of the speech signal is reconstructed in the
time domain.

The classical noise power estimators are based on voice
activity detectors (VAD) [1]. The power spectrum of the
noise components is then computed at each time frame as
a smoothed adaptation of its past values obtained during the
speech pauses. Although such procedures show reasonable ac-
curacy for stationary background noises, they cannot precisely
estimate time-varying spectra. Other algorithms, such as the
minimum statistics (MS) [4], the improved minima controlled
recursive averaging (IMCRA) [5] and the unbiased minimum
mean-square error (UMMSE) [6], have been proposed to deal
with these nonstationary noise conditions. Thus, the estimation
of the noise power spectrum is applied to each time frame even
during speech activity.

Alternative speech enhancement procedures have also been
proposed based on time-frequency (TF) analysis, such as the
wavelets [7], [8] and the empirical mode decomposition [9],
[10]. In such proposals, the TF analysis is applied to decom-
pose the noisy speech signal, and a decision criteria identifies
the least corrupted components before the reconstruction of
the enhanced version of the speech signal. Different from the

STFT-based methods, the TF-based ones do not require an
explicit estimation of the noise statistics.

In the literature, the speech enhancement approaches are
generally evaluated in terms of speech quality improvement.
The segmental signal-to-noise ratio (SegSNR) is the most
commonly used objective quality measure. However, the com-
parative study presented in [11] showed that, besides the qual-
ity improvement, the STFT-based noise-reduction algorithms
are not capable of increasing the speech intelligibility. This
situation becomes more challenging in nonstationary noisy
scenarios due to the inaccurate noise statistics tracking [12].

This paper compares the performance of STFT-based and
TF-based speech enhancement techniques in terms of speech
intelligibility. The noise-reduction algorithms are applied to
noisy speech signals in highly nonstationary environments.
Two STFT-based noise reduction algorithms are considered
in the experiments: the spectral subtraction (SS) [1] and the
UMMSE [6] noise estimator followed by the Wiener filtering
approach [2]. The wavelets denoising [8] and the EMD-Hurst-
based [10] TF-based algorithms are also considered in the
speech enhancement experiments. Four objective intelligibility
measures are used in the experiments: the frequency-weighted
segmental SNR (fwSegSNR) [13], the coherence speech in-
telligibility index (CSII) [14], the fractional articulation in-
dex (fAI) [15] and short-time objective intelligibility (STOI)
measure [16]. The main focus is to evaluate the objective
measures in predicting the speech intelligibility scores in
highly nonstationary noise.

II. SPEECH ENHANCEMENT TECHNIQUES

This Section describes the four speech enhancement tech-
niques adopted in this work. The SS and the Wiener/UMMSE
solutions apply the short-time Fourier transform (STFT) to
firstly obtain an estimate of the noise power spectrum. Then,
the identified noise components are subtracted or compensated
from the STFT of the noisy signal to improve the speech
quality. In the Wavelet Denoising and EMDH techniques,
the noisy speech signal is decomposed using time-frequency
analysis based on wavelets and EMD, respectively. Following,
the speech signal is reconstructed using only the components
that are not affected by the noise.

A. Spectral Subtraction

Let y(t) be a speech utterance corrupted by an additive noise
η(t). Thus, it can be written y(t) = x(t) + η(t), where x(t)
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represents the clean speech signal. By applying the STFT to
the above relation, it can be written

Y (κ, τ) = X(κ, τ) +N (κ, τ) , (1)

where κ and τ are the frequency bin and the time frame
indexes, respectively. The first step of the spectral subtraction

[1] is to estimate the noise power spectrum N̂ (κ, τ). For this
purpose, a VAD is applied to the input signal and the noise
spectral components are estimated by averaging the STFT of
frames identified with no speech presence.

After estimating N̂ (κ, τ), it is subtracted from the noisy
speech power spectrum,

|X̄(κ, τ)|2 = |Y (κ, τ)|2 − α(κ, τ) · |N̂ (κ, τ)|2 , (2)

where α(κ, τ) ≥ 1 is the oversubtraction factor. The enhanced
speech signal x̂(t) is reconstructed by overlapping and adding
the inverse Fourier transform of the clean speech power
spectrum.

B. Wiener/UMMSE

In the second speech enhancement procedure, the unbiased
minimum mean-square error (UMMSE) noise power estima-
tion [6] is adopted to track the noise spectrum. As in the
speech enhancement experiments presented in [6], the Wiener
filtering approach proposed in [2] is used to suppress the noise
components from the power spectrum of the speech signal.

In the UMMSE proposal, the authors combined speech
presence uncertainty to the estimator originally proposed in
[17], and found that the estimation of the noise power spectrum
can be updated every time frame using a recursive smoothing.
Different from MS [4] and IMCRA [5], the UMMSE does
not consider the minimum statistics of several past frames to
estimate the noise power spectrum. It means that the UMMSE
is able to track the changes in the noise power spectrum with
shorter delays, which is particularly important in nonstationary
noise environments.

The adoption of the Wiener filtering speech enhancement
approach is due to the fact that, as the UMMSE noise
estimator, it also considers that the speech and noise spectral
coefficients are complex Gaussian distributed. In this work, the
Wiener/UMMSE approach was implemented with the same
parameters defined in [6].

C. Wavelet Denoising

In the wavelet denoising [7] adopted as the third speech
enhancement approach, the noisy speech signal is firstly
decomposed into a series of approximation and detail coef-
ficients. Then, a thresholding operation is applied to the detail
coefficients to shrink the wavelets components of the noisy
speech signal. The idea of the wavelet thresholding is to set
to zero all the components that are attributed only to noise.
Finally, the enhanced speech signal is reconstructed using the
high-amplitude components only.

In the wavelets denoising implementation, the soft-
thresholding operator is considered with the universal thresh-

old T = σ
√
2 lnN [7], where N is the total number of

coefficients and σ is a rough estimate of the noise level. In
this work, the noise level is estimated based on the median
of the absolute deviation of the detail coefficients of each
decomposition level, i.e., it is a level-dependent estimation.

D. EMDH

The EMDH technique [10] adopts the empirical mode de-
composition [18] and the Hurst exponent (H) [19] to enhance
the noisy speech signal. The EMD is a nonlinear time-domain
adaptive method for decomposing a signal x(t) into a series
of oscillatory intrinsic mode functions (IMF) and a residual.
The EMD is adopted due to two main advantages over the
wavelet decomposition. Firstly, the wavelets-based approach
is based on a set of pre-defined basis functions, which does
not necessarily fits well to all kinds of signals. Moreover, the
wavelet decomposition is not adaptable to local or temporary
variations in the input signal. On the other hand, the EMD
analyzes the speech signal in an entirely adaptive way, and it
is completely based on the local properties of the input signal.
It makes the EMD suitable for nonstationary signal analysis.

In the EMDH technique, after decomposing the noisy
speech signal with the EMD, the Hurst exponent [19] is
computed from each frame of the resulting IMFs to determine
which of them are mainly composed by noise. Following the
procedure in [10], the Hurst exponent is estimated and the
threshold for the Hurst value is set to Hth = 0.9. It means
that each frame of the speech signal is reconstructed using only
the IMFs whose Hurst value follows H < 0.9. Finally, all the
reconstructed frames are concatenated to obtain the enhanced
version of the speech signal.

III. SPEECH OBJECTIVE INTELLIGIBILITY MEASURES

This Section briefly introduces the four objective measures
adopted in this work to evaluate the speech enhancement algo-
rithms in terms of speech intelligibility. Although a subjective
listening test is considered to be the best approach to evaluate
the intelligibility of speech signals, such tests are costly and
time consuming [16]. Thus, the fwSegSNR [13], the CSII [14],
the fAI [15] and the STOI [16] are selected in this work since
they present high correlation to the intelligibility scores (%
of correct words or sentences) obtained in subjective listening
tests.

A. fwSegSNR

The first step to compute the frequency-weighted segmental
SNR [13] is to obtain the spectra of the clean (|X(j, τ)|)
and enhanced (|X̂(j, τ)|) speech signals. It is achieved by the
division of their entire bandwidth into K = 25 frequency
bands using Gaussian-shaped filters. Then, the fwSegSNR is
given by

fwSegSNR =
10

Q

Q−1
∑

τ=0

∑K
j=1 W (j, τ) log |X(j,τ)|2

(|X(j,τ)|−|X̂(j,τ)|)2

∑K
j=1 W (j, τ)

,

(3)
where τ and j are the frame and frequency band indexes,
respectively. In this work, the weights W (j, τ) in (3) are
defined by W (j, τ) = |X(j, τ)|(0.2), since it leads to the high-
est correlation between the fwSegSNR and the intelligibility
scores in subjective listening tests [12].

B. CSII

The CSII measure [14] was proposed as an extension to
the speech intelligibility index (SII), standard ANSI S3.5-
1997. The SII evaluates the SNR in each frequency band
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of the enhanced speech signal. The frequency bands are
defined according to a critical band formulation that models
the auditory periphery. The intelligibility estimate is computed
as a weighted sum of the SNR values across all the frequency
bands. Since in the SII the power spectrum of speech and
noise are computed using long-term averages, it presents
good accuracy for stationary noises, but it is inaccurate for
nonstationary noises.

In the CSII proposal [14], the standard speech SNR es-
timate is replaced by the signal-to-distortion ratio (SDR)
computed from the magnitude-squared coherence (MSC). In
order to achieve a higher correlation to the intelligibility
scores obtained in subjective listening tests, the authors in [14]
computed the CSII separately for low-, medium- and high-
level segments of each sentence. The highest correlation was
obtained with a weighted sum of the corresponding measures
(CSIILow, CSIIMed and CSIIHigh) considering the following
weights

CSII = 0.155CSIILow + 0.845CSIIMed + 0.0CSIIHigh . (4)

In this work, the CSIILow, CSIIMed and CSIIHigh are obtained
according to the description in [14].

C. fAI

The articulation index (AI) [20] is the most commonly
used measure to predict speech intelligibility. It is based on
the principle that the intelligibility depends on the proportion
of spectral information of the speech that is audible to the
listener. To compute the AI, the speech spectrum is divided
into 20 bands that are considered to equally contribute to the
intelligibility. Then, the SNRs in each band are averaged using
weighting functions defined by band-importance functions.

The fAI was proposed in [15] to overcome some limitations
of the articulation index, mainly the fact that it cannot be used
to handle nonlinear processing with additive noise, such as the
spectral subtraction [1]. Moreover, the AI cannot be applied
when the corrupting noise is nonstationary. In the fAI proposal
[15], a new definition of the output SNR (fraction SNR -
fSNR) is presented to handle with nonlinear noise-reduction
techniques and derive a new intelligibility measure. The new
SNR definition is particularly important when the nonlinear
processing affects predominantly the speech signal rather than
the noise. Finally, the fAI is computed as the weighted sum
of fSNR values computed across all bands, considering the
same weights defined by the band-importance functions as in
the AI.

D. STOI

The short-time objective intelligibility measure [16] was
proposed as a correlation-based method to evaluate the speech
intelligibility degradation caused by the speech enhancement
procedures. The STOI results presented in [16] showed its high
and closest correlation with the subjective intelligibility rates
obtained with speech signals enhanced by noise-reduction
algorithms.

The first step of the STOI is to obtain the STFT of the clean
and the noisy versions of the speech signal, i.e., X(κ, τ) and
Y (κ, τ), respectively. Then, X(κ, τ) and Y (κ, τ) are grouped
in 15 one-third octave bands. Denoting ‖X(j,τ)‖ as the ℓ2

norm of the vector of the STFT components that belongs to
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Fig. 1. The SegSNR improvement obtained for each of the acoustic noise
sources averaged over the SNR values: -10 dB, -5 dB, 0 dB, 5 dB and 10 dB.

the jth band (j = 1, 2, . . . , 15), the temporal envelope vector
x(j,τ) of the clean speech is given by

x(j,τ) =
[

‖X(j,τ−29)‖, ‖X(j,τ−28)‖, . . . , ‖X(j,τ)‖
]

. (5)

The temporal envelope vector y(j,τ) of the noisy speech
is obtained in analogy to (5). The intermediate intelligibility
measure, STOI(j,τ), is defined as the correlation coefficient
between x(j,τ) and the normalized version of y(j,τ). Finally,
the STOI measure is given by averaging the intermediate
values over the 15 one-third octave bands and all Q speech
frames.

IV. SPEECH ENHANCEMENT INTELLIGIBILITY

EXPERIMENTS

The speech enhancement experiments are conducted with
a subset of 24 speakers (16 male and 8 female) randomly
selected from the TIMIT speech database [21]. It leads to a
total of 240 speech segments, 10 per speaker, with sampling
rate of 16 kHz and average time duration of 3 seconds.
Four highly nonstationary acoustic noises (Babble, Chainsaw,
Jackhammer and Train) are used to corrupt the speech signals
considering five SNR values: -10 dB, -5 dB, 0 dB, 5 dB and
10 dB. The noises are collected from the NOISEX-92 [22]
(Babble), the Freesound.org1 (Train) and the Freesfx.co.uk2

(Chainsaw and Jackhammer) databases.
The speech enhancement techniques are firstly evaluated in

terms of segmental SNR (SegSNR), to serve as a reference to
the objective intelligibility measures. The SegSNR is the most
commonly used measure to assess the quality of enhanced
speech signals. Fig. 1 presents the SegSNR improvement, in
dB, averaged across the five values of SNR. The improvement
is computed as the difference between the SegSNR result
obtained from the enhanced signal and that obtained from
the noisy (unprocessed) speech signal. Note that the EMDH
achieves the highest SegSNR gain for the four noise sources.
Regarding the STFT-based techniques, the SS outperforms the
Wiener/UMMSE for the Babble and Chainsaw noises. On the
other hand, the Wiener/UMMSE leads to better SegSNR gain
for the Jackhammer and Train noises. Finally, the wavelet
denoising achieves the lowest improvement for all the noise
sources.

1http://www.freesound.org.
2http://www.freesfx.co.uk.
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Fig. 2. fwSegSNR improvement (dB) obtained with the four speech enhance-
ment techniques considering the four acoustic noise sources.

A. fwSegSNR Results

The fwSegSNR results obtained from the speech enhance-
ment procedures are depicted in Fig. 2. The fwSegSNR
showed high correlation with the sentence recognition scores
in subjective listening tests in the experiments presented in
[12]. The results are presented in terms of fwSegSNR gain,
computed in the same manner as the SegSNR improvement
(Fig. 1).

It can be observed from Fig. 2 that the EMDH leads to the
best results for most of the noise conditions. The exceptions
occur for the Train noise, for which the Wiener/UMMSE
achieves the highest fwSegSNR gain for three SNR values:
-5 dB, 0 dB and 5 dB. It is important to note that, opposed
to the SegSNR results (refer to Fig. 1), the Wiener/UMMSE
technique outperforms the SS in terms of fwSegSNR for most
of the noise conditions, even for the Babble and Chainsaw
noises. This conclusion is in line with the results presented
in [12], that showed that the largest improvement in speech
quality, as obtained with SS, does not imply the speech intel-
ligibility results. Once more, the wavelet denoising presents
the worst fwSegSNR results.

B. Intelligibility Prediction Results

Different from the fwSegSNR, ehe CSII, fAI and STOI
measures are used to predict the intelligibility scores in sub-
jective listening tests. For this purpose, logistic functions are
used to transform the objective measure results into predicted
percentage of correcly recognized words.

The CSII and STOI results are transformed via following
logistic function

f(d) = 100/(1 + exp(a d+ b)) , (6)

where d represents the corresponding objective measure. In
this work, the coefficients a and b are determined to fit the
objective measures to the intelligibility scores obtained in
subjective listening tests presented in [11].

The prediction intelligibility results (percentage of correctly
recognized words) obtained with the CSII and the STOI are
presented in Tabs. I and II. Both CSII and STOI measures
indicate that the EMDH technique leads to the highest average
results for the Babble and Chainsaw noises. For the other noise
sources, the Wiener/UMMSE achieve the best intelligibility

TABLE I
INTELLIGIBILITY RATE PREDICTION (%) OBTAINED WITH THE

COHERENCE SPEECH INTELLIGIBILITY INDEX (CSII).

Noise SNR SS Wiener Wavelet EMDH

B
ab

b
le

10 93.0 92.2 84.9 92.2
5 68.1 71.4 57.4 71.5
0 29.1 34.6 22.2 36.4
-5 9.7 10.0 6.7 12.6

-10 3.0 2.8 2.0 4.0
Aver. 40.6 42.2 34.6 43.4

C
h
ai

n
sa

w

10 82.5 80.6 80.1 82.3
5 44.0 45.6 45.9 49.1
0 14.7 15.3 15.0 18.8
-5 4.3 4.2 3.9 5.8

-10 1.7 1.6 1.5 2.1
Aver. 29.4 29.5 29.3 31.6

Ja
ck

h
am

m
er

10 96.1 97.5 96.0 97.4
5 76.6 91.6 87.8 90.5
0 50.4 74.3 61.7 66.9
-5 23.5 40.3 24.6 30.1

-10 9.1 14.5 6.9 10.4
Aver. 51.1 63.7 55.4 59.1

T
ra

in

10 97.9 97.7 95.2 97.6
5 92.3 91.9 84.4 90.8
0 69.0 72.0 57.8 67.8
-5 28.8 36.9 22.8 32.8

-10 8.6 11.8 6.5 11.4
Aver. 59.3 62.1 53.3 60.1

TABLE II
INTELLIGIBILITY RATE PREDICTION (%) OBTAINED WITH THE

SHORT-TIME OBJECTIVE INTELLIGIBILITY (STOI) MEASURE.

Noise SNR SS Wiener Wavelet EMDH

B
ab

b
le

10 89.6 88.8 82.6 89.0
5 69.8 72.0 62.3 73.4
0 28.8 37.6 25.4 42.0
-5 5.9 9.2 5.5 12.5

-10 1.1 1.6 1.2 2.6
Aver. 39.0 41.8 35.4 43.9

C
h
ai

n
sa

w

10 86.6 85.7 86.9 88.2
5 55.1 57.0 61.3 61.8
0 16.7 19.3 23.5 25.1
-5 2.8 3.5 3.8 5.0

-10 0.7 1.1 1.0 1.5
Aver. 32.4 33.3 35.3 36.3

Ja
ck

h
am

m
er

10 90.7 92.9 92.4 92.7
5 71.0 85.9 84.7 86.9
0 37.9 72.2 68.2 72.4
-5 13.9 44.1 39.2 42.4

-10 5.2 17.4 13.4 16.5
Aver. 43.7 62.5 59.6 62.2

T
ra

in

10 90.8 90.2 89.0 90.0
5 81.6 80.8 76.3 81.0
0 60.1 63.5 53.9 63.6
-5 23.4 35.9 25.7 35.3

-10 4.8 11.2 6.6 10.8
Aver. 52.1 56.3 50.3 56.1

prediction results. It is interesting to note that the predicted
scores obtained with either the Wiener/UMMSE or the EMDH
techniques are always higher than those due to the SS or
the wavelets denoising. This can be explained by the fact
that both the EMDH and the Wiener/UMMSE consider the
occurrence of nonstationary noises in their formulation, while
the SS and the wavelet denoising do not. Moreover, the
intelligibility prediction scores with SS are generally higher
than those obtained with the wavelet denoising. However,
different from the fwSegSNR results, the wavelet denoising
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TABLE III
INTELLIGIBILITY RATE PREDICTION (%) OBTAINED WITH THE

FRACTIONAL ARTICULATION INDEX (FAI).

Noise SNR SS Wiener Wavelet EMDH
B

ab
b
le

10 94.5 94.3 93.5 95.3
5 83.3 86.0 85.0 88.7
0 44.0 60.6 58.8 65.9
-5 9.6 23.4 23.0 28.3

-10 0.6 3.9 3.6 5.8
Aver. 46.4 53.6 52.8 56.8

C
h
ai

n
sa

w

10 96.1 96.4 93.9 97.4
5 88.5 92.3 86.5 94.1
0 64.3 80.5 69.3 86.3
-5 36.3 61.8 41.3 70.6

-10 6.3 27.6 13.4 40.3
Aver. 58.3 71.7 60.9 77.8

Ja
ck

h
am

m
er

10 96.9 97.8 96.5 98.5
5 87.3 96.1 94.2 97.4
0 57.1 92.2 88.2 94.8
-5 18.6 81.0 73.5 87.8

-10 4.2 53.2 43.2 65.6
Aver. 52.8 84.1 79.1 88.8

T
ra

in

10 97.8 97.5 96.4 97.9
5 95.9 95.4 93.7 96.2
0 89.6 89.8 86.9 92.0
-5 62.0 73.0 68.2 78.6

-10 20.1 39.5 34.2 47.7
Aver. 73.1 79.1 75.9 82.5

technique outperforms the SS for the Jackhammer noise.
For the fAI, the logistic function adopted to predict the

intelligibility scores is the same as proposed in [15],

f(d) = (1− 10−dP/Q)2 , (7)

with P = 27.5 and Q = 8.4. The predicted intelligibility
scores obtained with the fAI measures are presented in Tab.
III. For the fAI measure, the EMDH outperforms the other
baseline techniques for all the noise conditions. Once again,
the Wiener/UMMSE technique outperforms the SS approach.
On the other hand, the spectral subtraction achieves the lowest
average predicted intelligibility scores for all the noise sources.

V. CONCLUSION

This paper evaluated the performance of different speech
enhancement techniques with four objective intelligibility
measures. The idea of using the objective measures is to avoid
the need for subjective listening tests, which are costly and
time consuming. The experiments are conducted in highly
nonstationary noise scenarios. Two of the speech enhancement
techniques are based on the use of the short-time Fourier
transform, and the other two apply time-frequency analysis to
the noisy speech signals. All the four objective measures agree
in the sense that the best intelligibility results are achieved
with the Wiener/UMMSE and the EMDH techniques, which
were originally proposed under the hypothesis that noises
are nonstationary. The fwSegSNR results showed that the
EMDH technique achieved the best improvement for most
of the noise conditions. The intelligibility rate prediction
based on the CSII, fAI and STOI measures reinforced the
superior performance of the EMDH technique, especially for
the Babble and Chainsaw noises. Finally, the CSII and the
STOI indicated that the Wiener/UMMSE technique is very
promising on achieving good intelligibility scores for the
Jackhammer and Train noises.
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