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Time-Frequency Feature and AMS-GMM Mask for
Acoustic Emotion Classification
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Abstract—In this letter, the pH time-frequency vocal source fea-
ture is proposed for multistyle emotion identification. A binary
acoustic mask is also used to improve the emotion classification ac-
curacy. Emotional and stress conditions from the Berlin Database
of Emotional Speech (EMO-DB) and Speech under Simulated and
Actual Stress (SUSAS) databases are investigated in the experi-
ments. In terms of emotion identification rates, the pH outperforms
the mel-frequency cepstral coefficients (MFCC) and a Teager-En-
ergy-Operator (TEO) based feature. Moreover, the acoustic mask
achieves accuracy improvement for both the MFCC and the pH
feature.

Index Terms—Binary acoustic mask, Hurst exponent, pH fea-
ture, speech emotion recognition.

I. INTRODUCTION

T HE effect of emotional expression on speech is an inter-
esting issue and it has been the object of many studies

[1]–[4]. The emotional state affects the speech production by
introducing changes in muscle tension and in the breathing rate.
The identification of emotions from speech is less intrusive than
other approaches, such as the heartbeat rate and blood pressure
measures. In [1], it was found that high-activation emotions,
such as anger and happiness, induce an arousal of the sympa-
thetic nervous system. The energy of the resulting speech signal
is more concentrated at the high frequency components. On the
other hand, low-arousal emotions, like boredom and sadness,
produce low-pitched speech signals. Thus, the emotion acoustic
evidence is more likely to be found in the voiced segments of
speech. The absence of emotion leads to a neutral speech.
The search for speech features suitable for emotion classi-

fication is still a crucial task. Vocal source features, extracted
from residual speech signals, have valuable information about
the pitch harmonics distribution [5]. The pitch carries important
information about emotion since it depends on the vocal folds
tension. Moreover, the excitation source contribution on the
short-time speech spectral envelope is affected by the speaking
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style [6]. For instance, forceful and abrupt speech with higher
frequency energy presents power spectral density (PSD) with
a dB/octave roll-off. On the other hand, more relaxed
speech with dominance of low frequency energy presents

dB/octave. In neutral speech it is observed an average
decaying rate of dB/octave. Due to their discriminating
capability, vocal source features have been investigated for
automatic speech emotion recognition [4], [7].
In this letter, the pH time-frequency vocal source feature [8]

is proposed for automatic multistyle speech emotion classifica-
tion. The pH consists of a vector of Hurst exponent ( ) values
and it is closely related to the excitation source. Another con-
tribution of this letter is the introduction of a binary acoustic
mask to improve the multistyle emotion recognition. The am-
plitude modulation spectrogram (AMS) and the Gaussian mix-
ture models (GMM) are adopted for the masking procedure. In
the literature, the use of binary masks are mainly focused on
the speech classification [9] and the speech intelligibility im-
provement [10] in background noisy scenarios. In this work, it
is used to identify or select the speech spectro-temporal compo-
nents that are most related to the emotional states.
The speech emotion identification experiments are conducted

with a set of emotions from the Berlin Database of Emotional
Speech (EMO-DB) [11] and stress conditions from the Speech
under Simulated and Actual Stress (SUSAS) [12] databases.
The accuracy of the pH vector as vocal source emotion feature is
firstly compared to those obtained with the MFCC and the Crit-
ical Band TEO Autocorrelation Envelope (TEO-CB-Auto-Env)
[2]. The results show that the pH outperforms the baseline fea-
tures for both speech databases. Finally, the proposed acoustic
mask is also applied to improve the emotion classification ac-
curacy. The best recognition results are obtained with the pH
feature applied to the masked signals.

II. PH VOCAL SOURCE FEATURE

The pH is a time-frequency feature that was proposed for
speaker identification and verification systems [8]. The Hurst
exponent ( ) expresses the time-dependence or
scaling degree of the speech signal , whose autocorrelation
coefficient function (ACF) asymptotically decays according to

(1)

The values can be related to the spectral characteristics of
. The pH is here proposed to represent the speech emotional

states [6], as follows:
• High-arousal emotions ( ): the dominant high
frequency components ( dB/octave roll-off) induce the
ACF to rapidly decay to zero.
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Fig. 1. An example of a pH vector estimation using the M-dim-wavelets with 3 decomposition stages.

• Neutral speech ( ): the ACF usually exhibits
exponential decay and the PSD decaying rate is about

dB/octave.
• Low-arousal emotions ( ): the low-fre-
quency energy leads to a slowly vanishing ACF, with

dB/octave PSD roll-off.

A. pH Vector Extraction

The wavelet-based multi-dimensional estimator (M-dim-
wavelets) [8] was proposed as the pH feature extractor and
is based on the method described in [13]. The estimation
procedure is as follows:
• Wavelet decomposition: apply the discrete wavelet
transform (DWT) to successively decompose a se-
quence of samples into approximation ( ) and detail
( ) coefficients, where is the decomposition scale
( ) and is the coefficient index of each
scale.

• Hurst exponent computation (HC) [13]: for each scale ,
the variance is evaluated from
the detail coefficients, where is the number of avail-
able coefficients for each scale . In [13], it is shown that

, where is a constant. A weighted
linear regression is then used to obtain the slope of the
plot of versus . The value of is given by

.
• pH vector composition: the pH vector is composed of

values of . The compo-
nent is computed from the decomposition of the entire
speech signal. The other values ( ) are
obtained after re-applying the DWT decomposition to
each of the detail sequences. Fig. 1 shows an example
of the pH estimation considering decomposition
stages, i.e.,

During the pH extraction, the time-frequency multi-resolu-
tion analysis captures the higher order correlations of the speech
samples. Such correlations are also present in the vocal sources
features, since they are extracted from the linear prediction
residual. Thus, the pH feature is closely related to the excitation
source, which is very useful for emotion classification [2].
Fig. 2 illustrates the values distribution of the speech sig-

nals collected from EMO-DB corresponding to four different
emotions: anger, happiness, neutral and sadness. The Hurst ex-
ponent is computed with the wavelet-based estimator [13] from
non-overlapping speech segments of 32 ms. In this work, the

Fig. 2. Distribution of the Hurst values for speech samples under four emo-
tional states.

Daubechies wavelets filters are applied for the DWT decompo-
sition. It can be seen that the values have higher relative fre-
quencies in the range for the high-arousal emo-
tions, i.e., anger and happiness. On the other hand, values
for sadness are mostly concentrated around values of .
This emphasizes that the pH feature is able to discriminate the
acoustic emotions.

III. AMS-GMM ACOUSTIC MASK

The proposed acoustic mask uses GMM to model the am-
plitude modulation spectrograms and decide which components
should be removed from the speech signal. The AMS was pro-
posed in [14] to compute the envelope spectrum of bandpass-
filtered speech signals and capture the modulation frequency
variations of each frequency band. Since the modulation fre-
quency pattern observed in voiced speech waveforms reflects
the speaker’s emotional state [2], the AMS is able to detect the
speech signal components that are most related to the target
emotional state. Fig. 3 shows the block diagram of themultistyle
emotion classification using the AMS-GMM acoustic mask and
four example emotional states.
The AMS estimation begins with the decomposition of the

speech signals into 25 sub-bands according to the mel-fre-
quency scale. The envelopes in each sub-band are computed
and divided into short-time segments of 32 ms using 50%-over-
lapping Hanning windows. The fast Fourier transform (FFT)
is then applied to estimate the modulation frequency spectrum
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Fig. 3. The emotion classification schematic using the acoustic mask consid-
ering four example emotional states. The emotional states are replaced by the
stress conditions when adopted for the SUSAS database.

of each sub-band. Finally, each spectrum is divided into 15
channels uniformly distributed in the range 15.6 Hz–400 Hz
[10]. The AMS vector of sub-band and time frame is
composed with the FFT magnitudes from each of the 15 chan-
nels. The AMS matrix is obtained by ,
where is the number of frames.

A. Training Phase

For each emotional state , the AMSmatrices estimated from
the training utterances are used to obtain 25 Gaussian mixture
models , one for each sub-band. The next step is to use these
mask models to decide whether to eliminate the spectro-tem-
poral components of the training speech signals. Thus, for each
(non-neutral) emotional state , the binary mask of
sub-band and frame is estimated as

otherwise
(2)

In (2), and are the likelihood func-
tions calculated as sums of Gaussian densities, the superscript
index refers to the neutral emotional state and is the mask
threshold for sub-band . It means that, in the speech recon-
struction, the mask removes the spectro-temporal regions (i.e.,

) which are more likely to belong to neutral (com-
pensated by a factor ) than to emotion . For neutral speech,
the decision criteria is given by

otherwise
(3)

where is the mask model of sub-band obtained from the
AMS matrices of all emotional states, except neutral.
After obtaining the mask GMMs, the acoustic mask is

applied to reconstruct the training utterances retaining the
spectro-temporal regions most related to their corresponding
emotional states. Then, speech feature matrices are extracted

from the masked signals and the GMM is finally obtained
for each emotional state .

B. Test Phase

During tests, the AMS matrices of the input speech signal
are estimated after the sub-band decomposition. Then, multiple
masked versions of the speech signal are reconstructed by ap-
plying the criteria defined in (2) and (3) for each emotional state.
Let represent the speech feature matrix (MFCC or pH) ob-
tained from the reconstructed signal considering the mask of
the emotional state . Then, the identified emotion for the
input signal is the one that maximizes the likelihood function

, i.e., .

IV. EXPERIMENTAL SETUP AND RESULTS

The proposed pH feature and GMM-AMS mask are evalu-
ated in acoustic multistyle emotion identification experiments.
The leave-one-speaker-out methodology (LOSO) [3] is adopted
to achieve speaker independence. The pH vectors are extracted
with decomposition stages considering two sizes of
speech segments: 20 ms and 50 ms. Thus, pH vectors are ob-
tained every 10 ms with components. The
values are computed using the Daubechies wavelet filters

with 12 coefficients. For the performance comparison, 12-di-
mensional MFCC vectors are obtained following the same con-
figuration adopted in [3], i.e., with speech frames of 25 ms at
a frame rate of 10 ms. The TEO-CB-Auto-Env vectors are ob-
tained from speech frames of 75 ms and 50% overlapping and
are composed of 16 coefficients [2]. In order to evaluate the
excitation source discriminating power, only the high energy
voiced segments are considered in the experiments. Thus, nei-
ther nor are appended to the feature vectors.
Regarding the tests with the acoustic mask, the threshold

values ( , ) are set as to retain 80% of the
regions most related to the corresponding emotional state. It
means that in each sub-band, 20% of the spectro-temporal
regions are suppressed by the masking procedure. Since it
led to the beste results in preliminary experiments, the GMM
used for the mask and emotional models are composed of 32
Gaussian densities with diagonal covariance matrices.

A. Results with EMO-DB

The EMO-DB corpus is composed of 494 utterances with
archetypical emotions obtained from ten professional actors.
Each utterance was obtained with a sampling rate of 16 kHz
and was previously approved by a perceptual emotion recogni-
tion test. The EMO-DB contains seven emotional states: anger,
boredom, disgust, fear, happiness, neutral and sadness.
Tab. I presents the emotion recognition accuracies achieved

with pH, MFCC and TEO-CB-Auto-Env. Note that, except for
happiness and sadness, the pH feature leads to the highest cor-
rect identification rates for all the emotional states. For fear, it
is improved from 33% with MFCC to 62% with the pH. In av-
erage, the accuracy obtained with the pH feature is 68.1%. This
result is 6.8 percentage points (p.p.) higher than that achieved
with the MFCC vectors, i.e., 61.3%. Moreover, the TEO-CB-
Auto-Env obtains the lowest average result: 50.4%.
The correct identification rates illustrated in Fig. 4 are ob-

tained with the proposed AMS-GMM acoustic mask. The av-
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TABLE I
EMOTION RECOGNITION ACCURACIES (%) FOR EMO-DB.

Fig. 4. Emotion identification accuracies (%) for EMO-DB using the
AMS-GMM acoustic mask.

erage results are presented in the legends. The adoption of the
AMS-GMMmask improves the identification results for the pH
and MFCC features. For instance, considering the pH feature,
more than 20 p.p. gain is obtained due to the masking pro-
cedure for boredom and happiness emotions. The results with
TEO-CB-Auto-Env feature are the only ones which are not im-
proved with the acoustic mask. It may be observed that the
pH vocal source feature outperforms the MFCC and TEO-CB-
Auto-Env for most of the emotions, and also in terms of average
recognition accuracy.

B. Results with SUSAS

The SUSAS database is composed of 3593 utterances spoken
on a park roller-coaster ride by seven speakers. The spoken text
corresponds to 35 English short commands, such as "no" and
"brake". The utterances were recorded with a sampling rate of
8 kHz and are divided into four real stress conditions: neutral,
medium stress, high stress and screaming.
The multistyle stress recognition accuracies obtained with

the MFCC, pH and TEO-CB-Auto-Env are presented in Tab. II.

Fig. 5. Stress identification accuracies (%) for SUSAS using the AMS-GMM
acoustic mask.

TABLE II
STRESS RECOGNITION ACCURACIES (%) FOR SUSAS.

Once again, the pH feature outperforms the baseline features.
For the high stress condition, for example, the pH leads to
an identification rate of 62%, while 53% is achieved with
the MFCC and 47% with TEO-CB-Auto-Env. Fig. 5 shows
the stress classification results considering the AMS-GMM
mask. Once again, the best performance is achieved with the
pH feature extracted from the masked signals. The average
identification result with the pH is more than 5 p.p. higher
than the MFCC. For both MFCC and pH features, the masking
procedure improves the recognition results for three the stress
conditions. Considering the use of both proposals (mask and
the pH feature), the average identification rate is improved
from 61.0% with MFCC to 70.8%.

V. CONCLUSION

This letter proposed the pH time-frequency vocal source fea-
ture and a binary acoustic mask for the speech emotion clas-
sification. The results show that the pH outperforms the base-
line features for the multistyle emotion and stress classification.
When compared to the MFCC, the average recognition results
obtained with the pH feature achieved absolute improvement of
6.8 p.p. and 3.0 p.p. for the EMO-DB and the SUSAS databases,
respectively. Also, the acoustic mask improved the identifica-
tion rates for the MFCC and pH and both databases. The com-
bination of the pH and the AMS-GMM mask led to more than
18 p.p. gain for the EMO-DB.
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