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FRS: Adaptive Score for Improving Acoustic Source
Classification From Noisy Signals
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Abstract—This letter introduces a Frame Relevance Score (FRS)
to improve the classification of environmental acoustic sources from
noisy speech signals. The importance of each short-time frame for
the classification results is objectively interpreted by SHapley Ad-
ditive exPlanations (SHAP) values. The FRS enables the selection
of frames that are more appropriate to improve the discrimination
power of the acoustic models. The FRS-based frame selection can
be used as a pre-training strategy to any classification approach.
Evaluation experiments consider the recognition of ten background
sources from noisy speech signals. The classical system based on
MFCC and GMM is adopted to prove that the selected frames can
better distinguish the acoustic classes. Moreover, the proposed so-
lution outperforms a surrogate-based adaptive learning technique
and a competing frame selection method. Experiments are also con-
ducted with a recently proposed pre-trained neural network that
achieves high classification rates. For this scenario, the FRS-based
selection improves the overall classification accuracy from 51.5%
to 58.8%.

Index Terms—Acoustic source classification, noisy speech
signals, surrogates, convolutional neural networks.

I. INTRODUCTION

I n the last decade, the classification of acoustic sources and
scenes has gained significant attraction [1], [2], [3], [4], [5].

Hearing aid, robot navigation, and smart devices are example
applications of this important task. Most of these studies mainly
focus on machine learning approaches [3], [5], such as dictionary
learning and convolutional neural networks (CNN). However,
large amount of data may be required for the training. Thus,
the analysis about the relevance of the observations available to
generate the source models is a key challenge.

The recognition of acoustic sources is particularly important
for speech-processing systems when speech signals are captured
in real noisy scenarios [6]. Several research works show that
speech enhancement [7], [8], [9], [10], [11], [12], speech recog-
nition [13], and speaker identification [14], [15] are largely af-
fected by acoustic background noises. Their results significantly
vary according to the characteristics of the corrupting noise.
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Thus, the classification of the acoustic source that corrupts the
speech signal may improve robustness of speech-based applica-
tions.

This Letter proposes a solution to improve the accuracy of
acoustic sources classification from noisy speech signals. For
this purpose, an objective score is introduced based on SHapley
Additive exPlanations (SHAP) [16] values to define the most
relevant frames of a target signal. The first step is to train a
CNN using the original unprocessed training data. Matrices
of SHAP values are then computed from each training signal
to assign the importance of each input feature to the network
output. In this work, the Frame Relevance Score (FRS) is defined
according to the SHAP values computed from the target and the
remaining classes. This objective score enables the removal of
the least relevant frames from the training dataset to achieve
better discrimination power among classes. The FRS-based
frame selection is suitable as a pre-training solution for any
classification approach.

Evaluation experiments are conducted in two scenarios ac-
cording to the input signals: acoustic sources only and noisy
speech signals. For both cases, two different approaches are ap-
plied to classify ten acoustic sources. The first system is based on
mel-frequency cepstral coefficients (MFCC) [17] and Gaussian
mixture models (GMM), which is an important stochastic strat-
egy for a variety of acoustic classification applications [14], [18],
[19]. The second approach is the recently introduced Pretrained
Audio Neural Network (PANN) [3]. MFCC + GMM results
show that the proposed solution improves the classification
accuracy in both scenarios. For the classification from noisy
speech signals, the FRS-based frame selection also outperforms
two pre-training methods adopted as baseline. In terms of PANN,
classification accuracies are higher than those attained with the
classical MFCC + GMM system. PANN results show that the
FRS-based frame selection provides substantial improvement
for noisy speech signals.

The main contributions of this work are summarized as fol-
lows:
� Introduction of an objective Frame Relevance Score for

acoustic sources classification based on SHAP values;
� Definition of a threshold to detect the least relevant frames

to enable a pre-training solution for any classification ap-
proach;

� Evaluation of the proposed frame selection for two differ-
ent classification approaches: MFCC + GMM and PANN.

II. SHAP-BASED FRAME RELEVANCE SCORE

The definition of the most relevant frames for acoustic sources
classification is based on the computation of SHAP values [16].
SHAP is a unified framework to interpret complex models
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Fig. 1. Block diagram of the FRS-based frames selection.

Fig. 2. Spectrograms of (a) chainsaw and (b) siren acoustic sources, and a
speech signal corrupted by the same (c) chainsaw and (d) siren sources with
SNR of 0 dB.

predictions, as those obtained from deep learning. It generalizes
six other feature attribution methods such as LIME [20] and
DeepLIFT [21]. In [22], SHAP was adopted to define a speech
relevance score to serve as an objective speech enhancement
measure.

Fig. 1 depicts the block diagram of the solution introduced
in this Letter. Spectrograms in Fig. 2 are used to illustrate the
challenging task of defining frames relevance to improve the
acoustic sources classification task. Spectrograms in Fig. 2(a),
(b), obtained from two acoustic sources (chainsaw and siren),
show that such sources present different behavior in terms
of time-frequency representation. This behavior does not hold
when these sources corrupt a speech signal, as in Fig. 2(c), (d).
The noisy speech signals consider a signal-to-noise ratio (SNR)
of 0 dB. It may be noted that, for example, the chainsaw source is
more prominent in Fig. 2(c) in time frames around [1.0− 1.5] s
and [4.0− 5.0] s. On the other hand, frames where the siren
noise prevail over the speech signal are not easily found by the
visual inspection of Fig. 2(d).

A. SHAP Values

SHAP values interpret the importance of a given feature
for a particular prediction by observing how its presence or
absence affects the network output. The main issue is to explain
a prediction f(x) based on a single D-dimensional input feature
x. For this purpose, let x = hx(x

′) denote the mapping function
between x and the simplified input x′ ∈ {0, 1}D. In this binary
vector x′, the values 0 and 1 respectively denote the absence and

presence of the corresponding feature. When a component xd

of x is absent, the mapping function hx() is approximated by its
expected value, such that

[hx(x
′)]d =

{
xd, if x′

d = 1;

E(xd), if x′
d = 0.

(1)

As an additive feature attribution method, SHAP approxi-
mates the network output as

f(x) = f (hx(x
′)) = φ0 +

D∑
d=1

φdx
′
d. (2)

The weights φd ∈ R in (2) correspond to the SHAP values of
the input features xd, d = 1, . . . , D.

In [16], different approaches are presented to solve the ap-
proximation problem and compute the SHAP values. Partic-
ularly, the Deep SHAP method connects Shapley values and
DeepLIFT [21] in a high-speed approximation algorithm for
deep learning models. Due to this reason, the Deep SHAP
implementation from the SHAP toolkit1 is adopted to compute
the SHAP values in this work.

B. Frame Relevance Score (FRS)

Consider a convolutional neural network trained to classify
acoustic sources among C different classes (refer to Fig. 1). Let
F ×N be the size of the input feature matrices, where F is the
number of feature coefficients extracted from each frame, and
N is the total number of frames. For each acoustic signal x(t)
available for training, SHAP values are computed to form a set
ofC matrices {Φx

c , c = 1, . . . , C}. OneF ×N matrix of SHAP
values is obtained for each class in the CNN output layer. Let
cx ∈ {1, . . . , C} denote the index of the class that x(t) belongs
to. For each frame n = 1, . . . , N , define Φx(n) as the sum of all
SHAP values from the n-th column of Φx

cx
,

Φx(n) =

F∑
f=1

Φx
cx
(f, n) , c = 1, . . . , C. (3)

Similarly, let Φx
aver(n) denote the sum of the n-th column

values of the SHAP matrices computed from x(t) averaged over
the C classes. Thus,

Φx
aver(n) =

1

C

C∑
c=1

F∑
f=1

Φx
c (f, n). (4)

Finally, the Frame Relevance Score is here introduced as

FRSx(n) = Φx(n)− Φx
aver(n) , (5)

which is expected to indicate the importance of the n-th frame
of x(t) to the correct decision prediction of class cx.

III. FRS-BASED FRAME SELECTION

In this work, the Frame Relevance Score is employed to detect
and remove the least informative frames for the training models.
The idea is to apply the proposed frame selection only to the
acoustic signals available for training. As stated in Section II-B,
frames of a training signal x(t) with greater FRS values indicate

1[Online]. Available: https://github.com/slundberg/shap
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increased relevance to the correct prediction of the class it
belongs to. Thus, a selection threshold θ must be set such that
the n-th frame of x(t) is preserved whenever FRSx(n) > θ,
and discarded otherwise. For this purpose, let μFRS and σFRS
denote the mean and standard deviation of the FRS values
computed from all frames of every signal available for training.
The threshold is here defined as

θ = μFRS − σFRS , (6)

which removes those frames whose FRS values are significantly
lower than the average.

The proposed FRS-based frame selection is suitable as a
pre-training solution for any classification strategy. For classical
stochastic approaches, such as GMM, the idea is to remove from
the feature matrices those vectors extracted from frames with low
FRS values. In this work, the MFCC + GMM approach considers
MFCC matrices with fewer columns to train the GMM of each
class.

For the classification using the PANN pre-trained network, the
input feature matrices must have the same size for both training
and test phases. It means that feature vectors from the low FRS
frames should not be simply discarded in such classification
approaches. To this end, a surrogate sample sequence is gener-
ated as in [2], [23] to reproduce the Kurtosis ratio, the power
spectral density, and the index of nonstationarity [24] of the
target signal. Each training signal is then reconstructed in the
time domain considering only the most relevant frames, while
the discarded ones are replaced by the corresponding frames
from the surrogate sequence. The Hanning window is applied to
ensure the continuity of the reconstructed signal.

IV. EXPERIMENTS AND RESULTS

Acoustic sources classification experiments are conducted to
evaluate the proposed FRS-based frame selection method. For
this purpose, a subset of the ESC dataset [25] composed by
400 audio recordings are selected from ten different classes:
airplane (Air), bells (Bel), chainsaw (Cha), engine (Eng), hand
saw (Han), helicopter (Hel), siren (Sir), train (Tra), vacuum
cleaner (Vac), and washing machine (Was). Note that these ten
classes are recorded from single acoustic sources, i.e., audio
samples captured in natural scenes are not applied for the clas-
sification system. As in [25], the subset is divided into five folds
for cross-validation: while one fold is separated for tests, the
remaining folds are used for training.

The classification of acoustic sources is also considered for
noisy speech scenarios. For these experiments, 12 speech signals
(six female, six male) with time duration greater than 5 seconds
collected from the TIMIT [26] database are corrupted with
the acoustic sources. To this end, ESC audio recordings are
downsampled to 16 kHz, while TIMIT speech signals are cut
to 5 seconds length. Three SNR values are adopted for the noisy
speech signals,−5 dB, 0 dB, and 5 dB, which are only considered
for the tests.

The surrogate assisted training (SAT) [2] and a feature vector-
based frame selection (FvFS) are adopted as baseline. The SAT
is implemented considering a set of 12 surrogate sequences
artificially generated according to [2], [23]. For the surrogates
selection, acoustic models are obtained for each training signal
and corresponding surrogates sequences. Considering the train-
ing dataset, a surrogate sequence is selected whenever it leads to
a higher classification accuracy than the original signal. Finally,

Fig. 3. FRS histogram from acoustic signals available for training the CNN
of the first cross-validation experiment.

Fig. 4. FRS histograms of three classes: (a) washing machine, (b) chainsaw,
and (c) siren.

the selected surrogates are used in the place of the original signals
for training.

The FvFS is based on the work introduced in [27]. For the
frames selection, four female and four male speech signals
from the TIMIT database are corrupted by the acoustic sources
considering five SNR values between −10 dB and 10 dB. Let
D(n) denote the set of Euclidean distances between the n-th
MFCC vector extracted from the acoustic source x(t) and the
corresponding vectors from the 40 speech signals corrupted by
x(t). The n-th frame of x(t) is selected whenever the sum
of distances in D(n) is below some threshold. Ten different
threshold values in [μD, μD + σD] are considered for the FvFS,
where μD and σD denote the mean and standard deviation
of the sum of distances computed from all frames of every
signal available for training. The FvFS results presented in this
work consider the optimal choice of the threshold according
to the overall classification accuracy in the noisy speech signal
scenario.

A. Analysis of the FRS Values

SHAP values are here computed from the original acoustic
sources using the CNN architecture that serves as baseline
for the acoustic scene classification task of the DCASE 2018
Challenge [28]. The CNN input size of 40× 500 is achieved by
extracting 40 log mel-band energies from frames with duration
of 40 ms and shift of 10 ms. Thus, ten 40× 500 SHAP matrices
are obtained for each training signal. The Frames Relevance
Scores are then computed according to (3)–(5). Fig. 3 depicts
the histogram of the FRS values from the acoustic signals
of folds 2–5, that are applied to train the CNN for the first
cross-validation experiment. The mean and standard deviation
of these FRS values are used to define the threshold θ for the
frames selection, also shown in Fig. 3.

In order to illustrate differences in the FRS values among
classes, Fig. 4 presents FRS histograms from the washing ma-
chine, chainsaw, and siren sources. Note that siren signals have
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TABLE I
ACOUSTIC SOURCES CLASSIFICATION ACCURACIES (%) WITH THE CNN

ADOPTED TO COMPUTE SHAP VALUES

Fig. 5. Classification results obtained from noisy speech signals by MFCC +
GMM with (n) no pre-training, (S) SAT, (F) FvFS, and (P) proposed FRS-based
frame selection.

fewer frames below the threshold when compared to the other
classes. It means that the FRS-based selection criterion discards
0.2% of the frames for siren, while 1.6% and 2.2% of the frames
are discarded for chainsaw and washing machine, respectively.
These results are consistent with the classification accuracies in
Table I: 87.5% of siren signals are correctly recognized, against
55.0% of chainsaw and 35.0% of washing machine. The average
accuracy is 65.25%.

B. Pre-Training for MFCC + GMM Classification

The classical MFCC + GMM approach is adopted for the first
set of acoustic sources classification experiments from noisy
speech signals. For this classification system, feature vectors
composed by 20 MFCC are extracted every 10 ms from frames
of 40 ms. Each GMM is trained with 8 Gaussian densities
considering diagonal covariance matrices.

The accuracy obtained for sources classification from noisy
speech signals are presented in Fig. 5. Note that the FRS-
based solution achieves the best results for most of the noisy
conditions. The overall accuracy is improved from 35.0% to
36.5% when compared to the MFCC + GMM approach with
no pre-training. These overall results are computed from 14400
tests, i.e., 12 female and male speech signals corrupted by 400
acoustic sources considering three SNR values. It corresponds to
an accuracy precision of 0.019 using the Chebyshev inequality
for a confidence degree of 95%. Furthermore, average gains
of 0.8 and 1.6 percentage points (p.p.) are achieved over the
baseline FvFS and SAT, respectively.

Considering the scenario with acoustic sources only, the clas-
sification accuracy is improved from 45.5% with the classical
MFCC + GMM, to 46.5% with the baseline FvFS and the

Fig. 6. Classification results obtained from noisy speech signals by the 14-
layer PANN with (n) no pre-training, (S) SAT, (F) FvFS, and (P) proposed
FRS-based frame selection.

proposed FRS frame selection. It is worth to mention that,
although the SAT does not improve the overall accuracy from
the noisy speech signals, it leads to the best result in the acoustic
sources only scenario: 47.0%.

C. Pre-Training for PANN Classification

Acoustic sources classification experiments are also con-
ducted considering the pre-trained 14-layer CNN (PANN) pro-
vided by [3]. To this end, the output fully-connected layer of the
PANN is adapted to consider the actual number of classes (ten).
The CNN is finetuned considering random initial weights for
this last layer, while all other parameters are initialized from the
pre-trained network. The same set of initial weights are adopted
for all experiments. In terms of acoustic sources only scenario,
the PANN achieves an classification accuracy of 82.25%. This
result is improved to 85.25% with the proposed FRS-based
frame selection, against 83.75% with the baseline FvFS. The
baseline SAT leads to the best result for this scenario: 86.00%.

The classification results from noisy speech signals obtained
with PANN, baseline, and proposed pre-training methods are
presented in Fig. 6. The FRS-based frame selection leads to
the best result for female and male speech signals and all three
SNR values. When compared to the PANN with no pre-training,
the average improvement achieves 8.2 p.p. for female speech
with SNR of 5 dB, and 7.5 p.p. for male speech with SNR of
−5 dB. In terms of overall accuracy, the proposed pre-training
method achieves a significant gain of 7.3 p.p., from 51.5% to
58.8%. This result is 5.8 p.p. greater than those obtained by
both baseline pre-training solutions.

V. CONCLUSION

This letter proposed the adoption of SHAP values to define a
Frame Relevance Score in the context of acoustic sources clas-
sification. The acoustic models training is performed only with
the most relevant frames to improve the discrimination power
among classes. The proposed solution was evaluated in classifi-
cation experiments divided into two scenarios, according to the
input signals: acoustic sources only, and noisy speech signals.
The identification of the environmental acoustic source from
noisy speech signals would lead to advances in many speech-
based applications. Experiments using the classical MFCC +
GMM stochastic approach showed that the FRS-based frame
selection leads to an overall improvement of 1.5 p.p. in the clas-
sification accuracy. The FRS-based frame selection also showed
improved results for the Pretrained Audio Neural Network, for
which the average accuracy was enhanced from 51.5% to 58.8%.
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