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Abstract: This study presents a widespread analysis of affective vocal expression classification systems. In this study, the
Hilbert–Huang–Hurst coefficient (HHHC) vector is proposed as a non-linear vocal source feature to represent the emotional
states according to their effects on the speech production mechanism. Affective states are highlighted by the empirical mode
decomposition-based method, which exploits the non-stationarity of the acoustic variations. Hurst coefficients are then
estimated from the decomposition modes to form the feature vector. Additionally, a vector of the index of non-stationarity (INS) is
introduced as dynamic information to the HHHC. The proposed feature vector is evaluated in speech emotion classification
experiments with three databases in German and English languages. Three state-of-the-art acoustic feature vectors are
adopted as a baseline. The α-integrated Gaussian mixture model (α-GMM) is also introduced for the emotion representation and
classification. Its performance is compared to competing for stochastic and machine learning classifiers. Results demonstrate
that the HHHC leads to significant classification improvement when compared to the baseline acoustic feature vectors.
Moreover, results also show that the α-GMM outperforms the competing classification methods. Finally, the complementarity
aspects of HHHC and INS are also evaluated for the GeMAPS and eGeMAPS feature sets.

1 Introduction
Affective states play an important role in the cognition, perception,
and communication of the human-being daily life. For instance,
some unexpected events can motivate the occurrence of a
happiness state, while stressful situations may cause health
problems. Automatic emotion recognition is especially important
to improve communication between humans and machines [1, 2].
In the literature, emotions are generally classified using physical or
physiological signals such as speech [3], facial expression [4], and
electrocardiogram (ECG) [5]. Particularly, speech emotion
recognition has received much research attention in the past few
years [6–11]. In this scenario, many promising applications can be
considered, such as security access, automatic translation, call-
centres, mobile communication, and human–robot interaction [12].

The speech production submitted to an emotional state is
affected by changes in muscle tension and breathing rate. These
changes lead to different speech signals depending on the emotion.
Fig. 1 depicts amplitudes and corresponding spectrograms of
speech signals produced with three affective expressions: neutral,
anger, and sadness. These signals were collected from the Berlin
Database of Emotional Speech (EMO-DB) [13] and were spoken
by the same female person and contain the same message. It can be
noted that amplitudes and spectrograms are functions of the
affective state.

In the context of social interactions, there is a large number of
emotional states [14]. According to Ekman [2], there are certain
emotions that can be naturally recognised by humans. Although
there is a universality of the affective states’ discrimination, their
decoding in the computational field is difficult. The identification
of an affective vocal print is fundamental to achieve a powerful

Fig. 1  Amplitudes and spectrograms of speech signals produced considering different emotional states
(a) Neutral, (b) Anger, (c) Sadness. These three signals correspond to the same female person speaking the same message in German: ‘Das will sie am Mittwoch abgeben’
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emotion recognition system. Thus, a key challenge is to define a
feature that enables the characterisation of different emotions [3,
12]. In the literature, there is not yet a consensus about an effective
acoustic feature for this task. In this sense, the choice of an
attribute that shows meaningful information related to the
physiological behaviour of multiple affective states is a crucial
search.

In [15], Teager-Energy-Operator (TEO) [16] based features
were proposed for the classification of stress conditions. The idea
was to capture non-linear airflow structures of the acoustic signal
induced by the speakers emotional state. Based on the fact that the
excitation source signal reflects the speaker physiological
behaviour, vocal source features may also be applied for this
purpose. Such features are less dependent on the linguistic content
of speech [17] in comparison to spectral ones. In [8], the pH vocal
source feature vector [18] was evaluated for emotion and stress
classification. The authors showed that TEO feature vectors might
not be suitable for emotion classification. Both pH and TEO
feature vectors do not take into account the non-linear effect of
speech production, such as the non-stationarity of the affective
acoustic variation and its dynamic behaviour. These aspects are
important to be exploited by an acoustic affective attribute.

One of the most common feature vectors applied as a baseline
in the literature and challenges is formed by mel-frequency cepstral
coefficients (MFCC) [19]. This vector has been widely used for
affective recognition [20] due to its success in other tasks, such as
speech and speaker recognition [17, 21]. Nonetheless, other
proposed features have shown superior performance than MFCC
[8, 15, 21, 22]. For instance, pH [18] achieves 6.8 percentage
points (p.p.) higher accuracy than MFCC in emotion classification
[8]. Some approaches have focused on recognition rates
improvement, where several features are combined to form
collections of low-level descriptors (LLDs) [12, 23]. This means
that there is not yet a consensus of an explicit single attribute for
emotion classification. Furthermore, such studies are applied in the
context of arousal and valence classification. Additionally, the
scope of this present study is the individual representation of each
affective state, which can improve the performance of
classification tasks.

Stochastic classifiers such as Gaussian mixture model (GMM)
[24] and hidden Markov model (HMM) [25] were widely adopted
for speaker and speech recognition tasks. The use of such
classifiers in emotion recognition [3, 7] is mainly due to their
success in these speech applications. More recently, machine
learning solutions have also been successfully adopted for speech
emotion classification [10, 26]. Among others, these classification
approaches include support vector machine (SVM) [27], deep
neural network (DNN) [28], convolutional neural network (CNN)
[29], convolutional recurrent neural network (CRNN) [30], and
long short-term memory (LSTM) [31]. Until now, there is no
consensus about which is the most suitable classifier for speech
emotion recognition. Due to this fact, current research works still
consider stochastic and machine learning approaches for emotion
classification [20].

The main contribution of this work is the introduction of a new
non-linear acoustic feature vector based on the non-stationary
effects of emotions. The empirical mode decomposition (EMD)
[32] is first applied to decompose the speech signals into a series of
intrinsic mode functions (IMFs). Then, Hurst coefficients H  [33]
are estimated from each IMF on a frame-by-frame basis to
compose the Hilbert–Huang–Hurst coefficient (HHHC) affective
vector. In this proposal, the EMD is used to emphasise acoustic
variations present in the speech signal, while Hurst coefficients can
characterise highlighted vocal source components. It means that the
combination of EMD with Hurst can capture the non-stationary
acoustic variations that occur during speech production, which
depend on the affective states. This aspect is still not well explored
in the literature.

The index of non-stationarity (INS) [34] is here proposed as
additional information to the HHHC feature vector. It dynamically
describes the non-stationary behaviour of affective speech samples.
The α − integrated GMM (α-GMM) [35] is also introduced to
classify emotional states. It is compared to classic GMM and

HMM stochastic methods, and also machine learning approaches
SVM, DNN, CNN, and CRNN. Several experiments are conducted
to show the effectiveness of the new vocal source feature vector in
different languages and scenarios. EMO-DB [13], IEMOCAP
(interactive emotional dyadic motion capture) [36], and SEMAINE
(sustained emotionally coloured machine–human interaction using
non-verbal expression) [37] databases are adopted for this purpose.
Results demonstrate that the 6-dimensional HHHC vector is a pure
and robust attribute for emotion. Additionally, HHHC vectors
contribute as complementary to the Geneva Minimalistic Acoustic
Parameter Set (GeMAPS) and its extended version (eGeMAPS)
[23] to improve the classification rates.

This paper is organised as follows. Section 2 introduces the
HHHC vector and presents the feature extraction procedure. The
INS is also described in this section. The α-GMM and competing
classifiers are presented in Section 3. Evaluation experiments are
described in Section 4 and the results are exhibited in Section 5.
Finally, Section 6 concludes this work.

2 New non-linear acoustic feature vector
The general idea of the HHHC vector is to characterise the vocal
source when affected by an emotional state. The affective content
of the speech is highlighted by the decomposition method of the
Hilbert–Huang transform (HHT). Instead of the original EMD, the
ensemble EMD (EEMD) [38] is applied to achieve improvement in
the affective states detection. After the decomposition, Hurst
coefficients, which are closely related to the excitation source,
capture the non-linear information from the emphasised acoustic
variations. In [39], it was shown that acoustic sources have
different degrees of non-stationarity. In this work, a vector of INS
values is proposed to analyse and detect speech emotional states.

2.1 HHHC feature vector

The HHHC vocal source feature vector is obtained by using the
EMD-based approach and the estimation of Hurst coefficients from
the decomposition process.

2.1.1 EMD/EEMD: EMD was introduced in [32] as a non-linear
time-domain adaptive method for decomposing non-stationary
signals into a series of oscillatory modes. As stated in [32], the
EMD is the ‘key part’ of the HHT analysis, and it was proposed
specifically for the HHT. The general idea is to locally analyse a
signal x t  between two consecutive extrema (minima or maxima).
Then, two parts are defined: a local fast component, also called
detail, d t , and the local trend or residual a t , such that
x t = d t + a t . The detail function d t  corresponds to the first
IMF and consists of the highest frequency component of x t . The
subsequent IMFs are iteratively obtained from the residual of the
previous IMF. The decomposition adopted in this work can be
summarised by the following steps:

(1) Identify all local extrema (minima and maxima) of x t .
(2) Interpolate the local maxima and minima via cubic splines to
obtain the upper eup t  and lower elo t  envelopes, respectively.
(3) Define the local trend as

a t = eup t + elo t /2. (1)
(4) Calculate the detail component as d t = x t − a t .

Every IMF has zero mean, and the number of maxima and zero-
crossings must be equal or differ by at most one. If the detail
component d t  does not follow these properties, steps 1–4 are
iteratively repeated with x t  replaced by d t  until the new detail
can be considered as an IMF. In this work, this sifting process is
repeated until the new IMF achieves the stopping criteria defined
in [40]. For the next IMF, the same procedure is applied on the
residual a t = x t − d t .

Since an input signal x t  can be decomposed into a finite
number of IMFs, the integrability property of the EMD can be
expressed as
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x t = ∑
m = 1

M
IMFm t + r t , (2)

where r t  is the last residual sequence.
As an alternative for the EMD, the EEMD method was

proposed to avoid the mode mixing phenomena [38], which refer to
IMF fluctuations that do not appear in the proper scale. Since these
oscillations impact on the Hurst values estimated from the IMFs,
the EEMD approach is expected to more properly emphasise
affective acoustic variations than the EMD. Given the target signal
x t , the EEMD method firstly generates an ensemble of I trials,
xi t , i = 1, …, I, each consisting of x t  plus a white noise of finite
amplitude, wi t , i.e. xi t = x t + wi t . Each trial xi t  is
decomposed with EMD leading to M modes, IMFm

i t ,
m = 1, …, M. Then, the mth mode of x t  is obtained as the average
of the I corresponding IMFs.

Fig. 2 shows the EEMD applied to three speech segments of 40 
ms collected from EMO-DB [13]. These segments refer to neutral
speech (Fig. 2a) and two basic emotions: anger (Fig. 2b) and
sadness (Fig. 2c). The EEMD applies a high-frequency versus low-
frequency separation between IMFs. Note that the affective signals
have different non-stationary dynamic behaviours. For instance,
IMFs 1 and 2 of anger present amplitude values higher than the
corresponding modes of the other signals. On the other hand, the
highest amplitude values are observed in the last three oscillations
(IMFs 4, 5, and 6) of the sadness state. This indicates that EEMD
highlights the affective content of speech. For high-arousal
emotions (e.g. anger), non-stationary acoustic variations are more
concentrated in the high-frequency IMFs, while the low-frequency
ones capture the prevailing content from the low-arousal emotions
(e.g. sadness).

2.1.2 Hurst coefficients: The Hurst exponent 0 < H < 1 , or
Hurst coefficient, expresses the time-dependence or scaling degree
of a stochastic process [33]. Let a speech signal be represented by a
stochastic process x t , with the normalised autocorrelation
coefficient function ρ k , the H exponent is defined by the
asymptotic behaviour of ρ k  as k → ∞, i.e.

ρ k ∼ H 2H − 1 k2 H − 2 . (3)

In this study, the H values are estimated from IMFs on a frame-by-
frame basis using the wavelet-based estimator [41], which can be
described in three main steps as follows:

(1) Wavelet decomposition: the discrete wavelet transform (DWT)
is applied to successively decompose the input sequence of
samples into approximation aw j, n  and detail dw j, n
coefficients, where j is the decomposition scale j = 1, 2, …, J  and
n is the coefficient index of each scale.

(2) Variance estimation: for each scale j, the variance
σ2 = 1/N j ∑n dw( j, n)2 is evaluated from the detail coefficients,
where N j is the number of available coefficients for each scale j. In
[41], it is shown that E σ j

2 = CH j2H − 1, where CH is a constant.
(3) Hurst computation: a weighted linear regression is used to
obtain the slope θ of the plot of yj = log2 σ j

2  versus j. The Hurst
exponent is estimated as H = 1 + θ /2.

In [8], it was shown that H is related to the excitation source of
emotional states. A high-arousal emotional signal has H values
close to zero, while a low-arousal one has H values close to the
unity. The authors extracted Hurst coefficients directly from the
speech signal in a frame-basis for the pH feature vector [8]. In
contrast, this present work deals with the estimation of Hurst
values from the IMFs of speech signals.

The composition of HHHC vectors obtained from speech
samples is illustrated in Fig. 3. Signals are collected from the
EMO-DB corresponding to five different emotional variations:
sadness, boredom, neutral, happiness, and anger. A time duration
of 40 s is considered for each emotional state. Six IMFs are
obtained by the EEMD method, applied to speech segments of 80 
ms and 50% overlapping. The Hurst exponent is computed and
averaged from non-overlapping frames of 20 ms within each IMF,
using Daubechies filters [42] with 12 coefficients and 3–12 scales
in the wavelet-based Hurst estimator. It can be seen that the vocal
source featured by Hurst coefficients are highlighted by the EEMD.
Note that low-arousal emotions present the highest H values for the
majority of the IMFs. For all the analysed IMFs, high-arousal
emotions have the lowest H averages.

2.1.3 HHHC feature extraction: The HHHC extraction from
affective speech signals is performed in two main steps: signal
decomposition using EMD or EEMD; and multi-channel
estimation of the Hurst exponent. An example of the HHHC vector
estimation with three values of H is presented in Fig. 4. The
decomposition is applied to each segment of the input signal. The
Hurst coefficients are obtained on a frame-by-frame basis from
each IMF. Then, the HHHC feature matrix is formed by
concatenating the extracted acoustic feature vectors.

2.2 INS vector

The INS is a time–frequency approach to objectively examine the
non-stationarity of a signal [34]. The stationarity test is conducted
by comparing spectral components of the signal to a set of
stationary references, called surrogates. For this purpose,
spectrograms of the signal and surrogates are obtained by means of
the short-time Fourier transform (STFT). Then, a dissimilarity
divergence D ⋅ , ⋅  is used to obtain the distance between the
spectrum of the analysed signal and its global spectrum averaged

Fig. 2  First six IMFs obtained with EEMD from voiced speech segments
(a) Neutral, (b) Anger, (c) Sadness
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over time. In [34], the authors propose the use of the divergence
measure D p1, p2  between two distributions p1 and p2 defined as

D p1, p2 = DKL p1, p2 1 + DLSD p1, p2 , (4)

where DLSD p1, p2  refers to the log-spectral deviation and
DKL p1, p2  is the Kullback–Leibler divergence between normalised
versions of p1 and p2. Let Dn

x  denote the divergence of the
spectrogram of the analysed signal computed at the time position
tn n = 1, …, N . Similarly, Dn

sj  denotes the distance measured from
the j surrogate sequence n = 1, …, N, j = 1, …, J . Then,
variances are obtained from the divergence values as

Θ0 j = var Dn
sj

n = 1, …, N
, j = 1, …, J

Θ1 = var Dn
x

n = 1, …, N

. (5)

Finally, the INS is given by

INS := Θ1/ Θ0 j j, (6)

where ⋅  is the mean value of Θ0 j . In [34], the authors
considered that the distribution of the divergence values could be
approximated by a Gamma distribution. Therefore, for each
window length Th, a threshold γ can be defined for the stationarity
test considering a confidence degree of 95%. Thus

INS ≤ γ, signal is stationary,
> γ, signal is non‐stationary . (7)

Fig. 5 depicts examples of the INS obtained from voiced segments
selected from the EMO-DB. Once again, these segments
correspond to the neutral state and two emotional variations: anger
and sadness. The time scale Th/T ∈ 0.0015, 0.5  is the ratio
between the length adopted in the short-time spectral analysis Th
and the total length T = 800 ms  of the signal. For each signal, a
total of J = 50 surrogates are randomly generated for the INS
computation. Note that INS for both emotional states (red line) is
higher than the threshold adopted in the test of non-stationarity
(green line). However, the INS values vary from one emotional
state to another. While the Neutral state has INS values in the range
[50,100] for most of the observed time scales, the INS of Sadness
reaches a maximum value of 60. On the other hand, Anger presents
INS greater than 100 for several time scales.

Figs. 3 and 5 indicate that, although HHHC and INS are based
on different time–frequency analysis methods, both can capture
relevant information regarding the speaker emotional state. In this
work, the INS is computed from each decomposition mode to
capture the non-stationarity dynamics of each IMF. Thus, INS
values are expected to reflect complementary dynamic information
to the HHHC vector. Due to this reason, the INS vector is here
proposed to be used together with the HHHC acoustic feature
vector, which is hereinafter denoted as HHHC + INS.

The procedure adopted in this work to obtain the INS vectors
can be summarised in the following steps:

(1) Apply the EEMD to decompose the target speech signal into a
series of M modes IMFm t , m = 1, …, M.
(2) Given a set of D time scale values, compute the INS from each
mode IMFm t . Thus, a vector of D INS values, INSm, is composed
of each m = 1, …, M.
(3) Vectors INSm, m = 1, …, M are concatenated to form a single
INS vector with DM coefficients.

3 Classification task
The α-GMM is here proposed for acoustic emotion classification.
The α-GMM was firstly adopted for speaker identification [35]. By
introducing a factor of α, the modelling capacity of the GMM is
extended, which is more suitable for acoustic variations conditions.

The α-integration generalises the linear combination of the
conventional GMM α = − 1 . For α < − 1, the α-GMM classifier
emphasises larger probability values and de-emphasises smaller

Fig. 3  Hurst mean values of six IMFs obtained from speech samples under five non-stationary emotional variations
 

Fig. 4  Example of an HHHC vector extraction with three coefficients
 

Fig. 5  INS computed from voiced segments considering emotional states
(a) Neutral, (b) Anger, (c) Sadness
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ones. Since affective states are assumed as acoustic variations
added to speech in its production, it is understood that α-GMM
increases the recognition performance. In accordance with [35], it
was demonstrated in [39] that α-GMM outperforms the
conventional GMM. Hence, the HHHC vector is evaluated
considering the α-GMM and the classical GMM α = − 1 . Five
other classifiers are used for comparative evaluation purposes.

3.1 α-integrated Gaussian mixture model

Given an affective state model λL, composed of M Gaussian
densities bi x , i = 1, …, M, the α-integration of densities is defined
as [35]

p x λL = C ∑
i = 1

M
πibi(x)

1 − α
2

2
1 − α

, (8)

where πi are non-negative mixture weights constrained to
∑i = 1

M πi = 1, and C is a normalisation constant. Note that α = − 1
corresponds to the conventional GMM.

Models λL are completely parameterised by mean vectors,
covariance matrices, and weights of Gaussian densities. These
parameters are estimated using an adapted expectation-
maximisation (EM) algorithm to maximise the likelihood function

p X λL = ∏
t = 1

Q
p xt λL , (9)

where X = x1x2…xQ  is the feature matrix extracted from the
training speech segment ΦL of the affective state L. During tests,
the speaker emotion is identified according to the maximum
likelihood criterion. It means that the classified emotion L
corresponds to the model λL that maximises the likelihood function
in (9).

3.2 Hidden Markov models

The HMM consists of finite internal states that generate a set of
external events (observations). These hidden states can capture the
temporal structure of the affective speech signal. Mathematically,
the HMM can be characterised by three fundamental problems:

(1) Likelihood: Given an HMM λL = A, B  with K states, and an
observation sequence x, determine the likelihood p(x λL), where A
is a matrix of transitions probabilities ajk, j, k = 1, 2, . . . , K, from
state j to state k, and B is the set of densities bj.
(2) Decoding: Given an observation sequence x and an HMM λL,
discover the sequence of hidden states.
(3) Learning: Given an observation sequence x and the set of states
in the HMM, learn the parameters A and B.

The standard algorithm for HMM training is the forward-
backward, or Baum–Welch algorithm [43]. It obtains matrices A
and B that maximise the likelihood p(x λL). The Viterbi algorithm
is commonly used for decoding [44].

3.3 Support vector machines

SVM [27] is a classical supervised machine learning model widely
applied for data classification. The general idea is to find the
optimal separating hyperplane, which maximises the margin on the
training data. For this purpose, it transforms input vectors into a
high-dimensional feature space using a non-linear transformation
(with a kernel function) space. Given a training set
uξ ξ = 1

N = xξ, Lξ ξ = 1
N , where Lξ ∈ −1, + 1  represents the

affective state L of the utterance ξ. Thus, the classifier is a
hyperplane defined as g x = wTx + b, where w is the gradient
vector which is perpendicular to the hyperplane, and b is the offset
of the hyperplane from the origin. The side of the hyperplane,

which belongs to the utterance, can be indicated by Lξg xξ . For
Lξ = + 1, Lξg xξ  must be greater than 1, while Lξg xξ  is required
to be smaller than −1 for Lξ = − 1. Then, the hyperplane is chosen

by the solution of the optimisation problem of minimising 1
2wTw

subject to Lξ wTx + b ≥ 1, ξ = 1, 2, …, N .
In this work, the input data for the SVM classifier is obtained

from mean vectors of feature matrices. This statistic was more
prominent than others, such as median and maximum value, as
observed in [26]. Radial basis function (RBF) is used as the SVM
kernel.

3.4 Deep neural networks

DNN is one of the most prominent methods for machine learning
tasks such as speech recognition [45], separation [46], and emotion
classification [10]. The deep learning concept can be applied for
architectures such as feedfoward multilayer perceptrons (MLPs),
CNNs and RNNs [47]. In this work, it is considered MLP that has
feedforward connections from the input layer to the output layer,
with sigmoid activation function yj for the neuron j,
yj = 1/ 1 + e−x j , where xj = bj + ∑i yiwi j is a weighted sum of the
previous neurons with a bias bj [45].

The majority voting strategy is adopted for the emotion
classification with DNN. It means that the DNN is first applied to
classify each frame vector to an emotional condition. Then, the
emotion assigned to the entire speech segment is the one that
received the maximum number of frame labels.

3.5 Convolutional neural networks

CNNs [29] have been widely adopted in the acoustic signal
processing area, particularly for sound classification [48, 49] and
sound event detection [50]. CNNs extend the multilayer
perceptrons model by introducing a group of convolutional and
pooling layers. The convolutional kernels are proposed to better
capture and classify the spectro-temporal patterns of acoustic
signals. Pooling operations are then applied for dimensionality
reduction between convolutional layers.

3.6 Convolutional recurrent neural networks

CRNNs [30] consist of the combination of CNNs with RNN. The
idea is to improve the CNN by learning spectro-temporal
information of relatively longer events that are not captured by
convolutional layers. For this purpose, recurrent layers are applied
to the output of the convolutional layer to integrate the information
of earlier time windows. In the literature, CNNs and RNNs have
been successfully combined for music classification [51] and sound
event detection [30]. In this work, a single feedforward layer with a
sigmoid activation function that follows the recurrent layers is
considered as the output layer of the network [30].

4 Experimental setup
Extensive experiments are carried out to evaluate the proposed
HHHC acoustic feature vector. In the training phase, affective
models are generated after the pre-processing and feature
extraction steps. During tests, for each voiced speech signal, the
extracted feature vector is compared to each model. The leave-one-
speaker-out (LOSO) methodology [7] is adopted to achieve speaker
independence. For all databases, the modelling of each affective
state is conducted with 32 s randomly selected from the training
data. For the tests, 800 ms speech segments are applied for each
emotion of the testing speaker. The detection of emotional content
in instances with <1 s time duration is suitable for real-life
situations [12].

The α-GMM is evaluated with five values of α: −1 (classical
GMM), −2, −4, −6, and −8. Affective models are composed of 32
Gaussian densities with diagonal covariance matrices. The HMM is
implemented using the HTK toolkit [52] with the left-to-right
topology. For each affective condition, five HMM states are used

526 IET Signal Process., 2020, Vol. 14 Iss. 8, pp. 522-532
© The Institution of Engineering and Technology 2020



with one single Gaussian each. The SVM implementation is carried
out with the LIBSVM [53], using the ‘one-versus-one’ strategy.
The search for the optimal hyperplane is conducted in a grid-search
procedure for the RBF kernel, with the controlling parameters
being evaluated for c ∈ (0, 10) and γ ∈ (0, 1). The DNNs setup
adopted in this paper is according to the DNN configuration
presented in [46], considering multilayer perceptrons with three
hidden layers. The networks are trained with the standard
backpropagation algorithm with dropout regularisation (dropout
rate 0.2). It is not used any unsupervised pretraining. The
momentum rate used is 0.5. Sigmoid activation functions are used
in the output layer. The hidden layers are composed of 1024
rectified linear units each. CNNs and CRNNs are implemented
with three convolutional layers followed by max-pooling operation
with (2, 2, 2) and (5, 4, 2) pool arrangements, respectively [30]. A
single recurrent layer is used to compose the CRNN.

In order to verify the classification rates improvement for
emotion recognition, the proposed HHHC vector is also evaluated
as complementary to collections of features such as GeMAPS [23].
For this purpose, binary arousal and valence classification
experiments are carried out using the SVM classifier.

4.1 Speech emotion databases

Three databases are considered in the experiments: EMO-DB [13],
IEMOCAP (Interactive Emotional Dyadic Motion Capture) [36],
and SEMAINE (Sustained Emotionally coloured Machine-human
Interaction using Nonverbal Expression) [37]. Only the voiced
segments of speech are considered in the experiments. For this
purpose, the pre-processing step selects frames of 16 ms with high
energy and a low zero-crossing rate. The sampling rate used for all
databases is 8 kHz.

EMO-DB consists of ten actors (five women and five men) that
uttered ten sentences in German with archetypical emotions. In this
work, five emotional states are considered: anger, happiness,
neutral, boredom, and sadness. Although EMO-DB comprises
seven emotions (including disgust and fear), the experiments with
five of them are carried out in order to show the power of an
acoustic feature vector in characterise emotions that are naturally
recognised by humans. Thus, five emotions were chosen to show
the effectiveness of the HHHC vector. A total of 40 s of voiced
speech segments is available for each emotional state.

IEMOCAP is composed of both scripted and spontaneous
conversations in the English language. Ten actors (five women and
five men) were recorded in dyadic sessions in order to provide a
more natural interaction of the targeted emotion. Although it
comprises 12 h of recordings, a portion of the IEMOCAP database
is applied to obtain the short emotional instances to be used for
tests. Four emotional states are considered: anger, happiness,
neutral, and sadness. For each emotional state, a total of 10 min of
voiced content are used in the experiments: 5 min of scripted and 5 
min of spontaneous speech.

The SEMAINE database features 150 participants
(undergraduate and postgraduate students from eight different
countries). The sensitive artificial listener (SAL) scenario was used
in conversations in English. Interactions involve a ‘user’ (human)
and an ‘operator’ (either a machine or a person simulating a
machine). Recordings of ten participants (five women and five
men) are chosen for the experiments. From 27 categories (styles),
four emotional states are selected: anger, happiness, amusement,
and sadness. The set of voiced speech samples for each emotional
state has 90 s.

4.2 Extracted features

Six-dimensional HHHC vectors are extracted according to the
procedure presented in Section 2.1. For the EEMD-based analysis,
the number of ensembles is set to I = 100. A total of 11 Gaussian
noise levels are evaluated considering the noise standard deviation
(std) in the range 0.005, 0.1 . The robustness of the HHHC is also
verified using the INS in the feature vector (HHHC + INS). For
each IMF, the INS values are computed with ten different
observation scales, Th/T ∈ 0.0015, 0.5 .

For the performance comparison and feature fusion, MFCC,
TEO-CB-Auto-Env, and pH vectors are used in the experiments.
Fusion procedures are carried out for an improvement provided by
the proposed HHHC in the recognition rates of the baseline
features vectors.

4.2.1 MFCC: The extraction of mel-frequency cepstral
coefficients [19] starts with the computation of the fast Fourier
transform (FFT) from short-time frames of the speech signal. Mel-
scaled bandpass filters are then used to obtain the spectral envelope
of each frame. The mel scale better represents the human auditory
system when compared to the linear scale. Frequencies in mel
f Mel  and linear f Hz  scales are related by

f Mel = 1127log 1 + f Hz
700 . (10)

The discrete cosine transform is finally applied to the output of the
mel scaled filters to achieve the MFCC vectors. In this work, 12-
dimensional MFCC vectors are obtained from speech frames of 25 
ms, with a frame rate of 10 ms.

4.2.2 TEO-CB-Auto-Env: The TEO [54] was developed to reflect
the non-linear energy flow within the vocal tract during the speech
production. The idea is to capture the vortex-flow interactions
induced by changes in the vocal system due to emotional states.
For a discrete-time signal x t , the TEO Ψ  is given by

Ψ x t = x2 t − x t + 1 x t − 1 . (11)

The extractor of the critical band based TEO autocorrelation
envelope (TEO-CB-Auto-Env) first splits the speech signal into
critical bands using Gabor bandpass filters. The TEO is applied to
capture the non-linear energy flow of each frequency band. For
each frame, normalised autocorrelation functions are computed and
the corresponding areas under the curves are used to compose the
TEO-based feature vector. In this work, TEO-CB-Auto-Env
vectors with 16 coefficients are extracted from 75 ms speech
samples, with 50% overlapping.

4.2.3 pH: The pH vocal source feature vector was proposed in [18]
for automatic speaker classification. It is composed of Hurst values
that express the scaling degree of the analysed signal. In [8], the
authors showed that H values of speech signals produced in high-
arousal emotions generally rely on the range 0 < H < 1/2, while
low-arousal emotions lead to 1/2 < H < 1. Moreover, pH
outperformed MFCC and TEO-CB-Auto-Env feature vectors in
speech emotion recognition experiments.

The pH extractor applies the DWT to successively decompose
the speech signal into sequences of approximation and detail
coefficients. The wavelet-based estimator is then applied to obtain
H values from the approximation sequences. For each time frame,
a pH vector is composed of Hurst values estimated from the
original samples and all decomposition scales. For the experiments,
the estimation of the pH feature vector is conducted considering
frames of 50 ms, every 10 ms, using the Daubechies wavelet filters
with 12 coefficients (2–12 scales).

5 Results
This section presents accuracies results obtained in speech emotion
classification. Confusion matrices achieved for the EMO-DB,
IEMOCAP, and SEMAINE databases are shown in Tables 1–3,
respectively. These confusion matrices are attained with α-GMM,
HMM, and SVM classifiers for the HHHC, HHHC + INS, and
baseline feature vectors. Considering the Chebyshev inequality
[55] and a confidence degree of 95%, the precision obtained for the
accuracy values due to the number of tests is 0.0070 for EMO-DB
(250 tests), 0.0021 for IEMOCAP (2840 tests), and 0.0053 for
SEMAINE (450 tests). Although the HHHC vector extracted with
the conventional EMD outperforms the competing attributes, the
EEMD-based approach reaches even higher accuracies. Results for
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HHHC are achieved with the EEMD-based approach considering
low Gaussian noise level (0.005≤std≤0.02).

5.1 Results with EMO-DB

For the α-GMM, the proposed HHHC vector achieves the highest
average accuracy (79.2%) with three values of α (−4, −6 and −8).
This result is better than that attained with pH for α = − 2
(65.4%). HHHC also outperform the MFCC (63.6%) and TEO
(52.8%) feature vectors in 15.6. and 26.4 p.p., respectively. The
INS information contributes to>2 p.p. for the HHHC average
accuracy. The HHHC vector achieves almost 60.0% of recognition
for each considered emotional state using α-GMM. For all
considered feature sets, the α-GMM (including the original GMM)
outperforms the HMM and SVM classifiers.

Fig. 6 presents the average classification accuracies obtained
with the proposed and baseline feature vectors considering the
neural network classifiers. Average results obtained with the α-
GMM are also shown in Fig. 6. Note that HHHC and HHHC + INS
achieve the best results for all classifiers. For the CRNN, which
outperforms DNN and CNN, the HHHC vector leads to an
improvement of 12.4 p.p. over pH: from 64.4 to 76.8%. For this
classifier, the average accuracy obtained with HHHC + INS

achieves 79.2%, i.e. 2.4 p.p. higher than HHHC. It can also be
noticed that the introduced α-GMM achieves the best classification
accuracies for all features sets. For HHHC + INS fusion, e.g. the
average accuracy with α-GMM is 2.6 p.p. greater than CRNN.

Fig. 7 shows the identification accuracy with α-GMM for the
feature fusion between HHHC and competing for feature vectors. 
The best average accuracy attained with the pH + HHHC fusion
(75.6% with α = − 6) is 10.2 p.p. higher than that achieved with
pH only (65.4%). The MFCC + HHHC fusion reaches the best
accuracy (73.7%) with α = − 8. It means that the HHHC vector
increases in almost 10 p.p. the recognition rate provided by the
MFCC feature vector. Concerning the TEO + HHHC fusion, the
best average accuracy is 72.1% with α = − 6 and α = − 8, which
means an improvement of 19.2 p.p. for the TEO-based feature
vector.

5.2 Results with IEMOCAP

It can be seen from Table 2 that, for all considered feature sets, the
α-GMM leads to superior accuracies when compared to the HMM
and the SVM classifiers. Only HHHC and HHHC + INS reach
average accuracies higher than 60.0%. These values are achieved
using the α-GMM with α = − 8. In comparison to baseline feature

Table 1 Accuracy rates (%) of five emotional states with the HHHC and baseline feature vectors for EMO-DB

Bold values correspond to the percentage of correctly classified emotions
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vectors, the HHHC vector leads to an average accuracy 8 p.p.
higher than pH vector α = − 8 , 10 p.p. higher than MFCC
α = − 4  and 15 p.p. higher than the TEO-based feature vector
α = − 6 . For each emotional state, the α-GMM attains >50.0%

accuracies with HHHC. Furthermore, the α-GMM provides an
improved performance with the baseline feature vectors, in
comparison to HMM and SVM approaches.

Fig. 8 presents the average classification accuracies of
IEMOCAP considering the α-GMM and neural network classifiers. 
Similarly to the EMO-DB, the HHHC vector outperforms the pH,
MFCC, and TEO feature vectors for all classifiers. For the CRNN,
the HHHC vector achieves an average accuracy of 54.3%, which is
3.0, 7.0, and 12.0 p.p. greater than pH, MFCC, and TEO,
respectively. Moreover, HHHC + INS leads to the best results in all
scenarios. The α-GMM also outperforms the competing classifiers
for all features sets.

Fig. 9 depicts the results achieved with the features fusion using
the α-GMM for the HHHC and baseline feature vectors in the
IEMOCAP database. The pH + HHHC fusion obtains an accuracy
of 63.2% α = − 8 , which outperforms both pH (52.8%), and
HHHC + INS (62.8%). The fusion of Hurst-based feature vectors

(pH + HHHC) indicates that the relation between H and the
excitation source enables high performance in the discrimination of
basic emotions. In comparison to the MFCC, the MFCC + HHHC
fusion improves the average accuracy from 50.8 to 60.5%
α = − 4 . Considering the TEO + HHHC fusion, the best result

(56.1%) is achieved with α = − 4, which is 11.9 p.p. higher than
that obtained with the TEO-based feature vector only.

5.3 Results with SEMAINE

The best average accuracies are obtained with HHHC and HHHC 
+ INS (refer to Table 3): 54.5 and 57.0%, respectively, using α-
GMM with α = − 6. These results are greater than those obtained
with the baseline feature vectors: 50.8% for pH α = − 4 , 49.0%
for the MFCC α = − 6 , and 40.8% for the TEO-based feature
vector α = − 8 . An important issue about the SEMAINE
database is mainly concerned with the Happiness and Amusement
states recognition. Although these emotions present similar
behaviour, the HHHC shows to be able to recognise both of them
with >50.0% classification accuracy with the α-GMM. For baseline
feature vectors, the α-GMM average result reaches >4 p.p. over

Table 2 Accuracy rates (%) of four emotional states with the HHHC and baseline feature vectors for IEMOCAP

Bold values correspond to the percentage of correctly classified emotions
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HMM and 10 p.p. over SVM. The α-GMM outperforms the HMM
and SVM classifiers for all considered emotional states. According
to the average classification results shown in Fig. 10, α-GMM also
leads to the highest classification rates when compared to DNN,
CNN, and CRNN classifiers. For these classifiers, HHHC and
HHHC + INS also achieve the best average results.

The best recognition rates on the feature fusion task with the
HHHC and the baseline feature vectors using α-GMM are shown

in Fig. 11. The pH + HHHC fusion attains an average accuracy of
56.5%, which represents an improvement over the pH and HHHC
feature vectors. With the MFCC + HHHC features fusion and
α = − 6, the recognition rate varies from 49.0 to 53.6%. The
HHHC provides an improvement of more than 6 p.p. when
compared to the TEO-based feature vector (47.4%, α = − 8). The
proposed feature vector is also very promising for discriminant
learning strategies [10] applied to DNN and deep CNN methods
for speech emotion classification.

5.4 HHHC complementarity aspect

In order to evaluate the complementarity of the HHHC feature
vector to collections of features sets, binary arousal and valence
emotion classification are carried out considering all emotions of
EMO-DB. According to the psychological dimensional theory
presented in [56], arousal and valence are independent dimensions
of affective states. The term arousal refers to the physiological
activation level according to a person's emotional condition,
varying from calm (or low) to excited (or high). In this work,
anger, fear, and happiness are considered as high arousal emotions,
while boredom, sadness, neutral, and disgust are low arousal

Table 3 Accuracy rates (%) of four emotional states with the HHHC and baseline feature vectors for SEMAINE

Bold values correspond to the percentage of correctly classified emotions
 

Fig. 6  Average accuracies of EMO-DB obtained with α-GMM and neural
network classifiers
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affective states. On the other hand, valence is related to the
pleasantness induced by an affective state: pleasant (positive) or
unpleasant (negative). In terms of valence, Happiness and Neutral
are assumed as positive conditions while the remaining states are
negative.

The GeMAPS feature set and its extended version (eGeMAPS)
[23] are adopted for the binary classification experiments. The
GeMAPS is formed of 62 functionals extracted from 18 low-level
descriptors and six temporal features. Functionals of the other
seven LLD are added to the GeMAPS feature set to compose the
eGeMAPS, leading to a total of 88 parameters. The experimental
setup is similar to [23] with eight folds cross-validation, where the
speaker IDs are randomly arranged into eight speaker groups. The
SVM method is applied for the classification procedure with the
LIBSVM toolkit and the same parameters presented in Section
4.Table 4 shows the results of UAR (unweighted average recall)
obtained from experiments with GeMAPS, eGeMAPS, HHHC,
HHHC + INS, and the feature fusion of the proposed acoustic
feature vector with the comparative feature sets. Note that, for
arousal evaluation, GeMAPS and eGeMAPS reach >93% UAR
while HHHC and HHHC + INS achieve 80.5 and 83.2%,
respectively. While the standard feature sets need 62 and 88
parameters (GeMAPS and eGeMAPS, respectively) for this result,
the HHHC vector shows interesting accuracy for a low-
dimensional feature vector. However, HHHC and HHHC + INS
contribute to an improvement in the UAR obtained with GeMAPS
and eGeMAPS. For instance, the eGeMAPS + HHHC + INS fusion
reaches 98.4% UAR. In valence classification, HHHC and HHHC 
+ INS also contribute to the feature sets. GeMAPS performance is
improved from 74.4 to 80.4% with HHHC + INS, while eGeMAPS
reaches 82.1% with this fusion. This experiment demonstrates the
complementarity potential of the HHHC to the GeMAPS and
eGeMAPS features sets. It means that the HHHC and the HHHC + 
INS vectors can significantly improve the performance of large
feature sets by adding only a few more parameters.

6 Conclusion
This work introduced the HHHC non-linear vocal source feature
vector for speech emotion classification. The INS was used as
dynamic information for the HHHC vector. Furthermore, the α-
GMM approach was proposed for this classification task. It was
compared to HMM, SVM, DNN, CNN, and CRNN. The best
average classification accuracies were obtained using the α-GMM.
In comparison to baseline feature vectors, HHHC obtained superior
accuracy considering three different databases. On the feature
fusion, HHHC vectors provide an improved performance for all
considered baseline feature vectors. As for the EMO-DB, the
highest classification accuracy was 81.8% with HHHC + INS. For
the IEMOCAP database, it was reached an average accuracy of
63.2% with pH + HHHC. In the SEMAINE context, the best
average accuracy was 57.0% with HHHC + INS. The superior
performance of the proposed feature vector showed that the HHHC
vector is very promising for affective state representation and for
classification tasks. Also, the HHHC complementarity to the
GeMAPS features set was verified by the improvement in the
recognition rates in binary arousal and valence emotion
classification.

Fig. 7  Classification accuracies with feature fusion and α-GMM classifier
of emotional states from EMO-DB

 

Fig. 8  Average accuracies of IEMOCAP obtained with α-GMM and
neural network classifiers

 

Fig. 9  Classification accuracies with feature fusion and α-GMM classifier
of emotional states from IEMOCAP

 

Fig. 10  Average accuracies of SEMAINE obtained with α-GMM and
neural network classifiers

 

Fig. 11  Classification accuracies with feature fusion and α-GMM
classifier of emotional states from SEMAINE

 

Table 4 Classification of binary arousal and valence for
EMO-DB
Feature Set UAR (%) with SVM

Arousal Valence
HHHC 80.5 67.8
HHHC + INS 83.2 69.9
GeMAPS 93.2 74.4
eGeMAPS 93.9 74.8
GeMAPS + HHHC 96.1 79.1
GeMAPS + HHHC + INS 97.6 80.4
eGeMAPS + HHHC 96.7 81.3
eGeMAPS + HHHC + INS 98.4 82.1
Bold values refer to the best results achieved with the GeMAPS and eGeMAPS
features sets.
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