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Speech Enhancement with EMD and
Hurst-Based Mode Selection
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Abstract—This paper presents a speech enhancement technique
for signals corrupted by nonstationary acoustic noises. The pro-
posed approach applies the empirical mode decomposition (EMD)
to the noisy speech signal and obtains a set of intrinsic mode func-
tions (IMF). The main contribution of the proposed procedure
is the adoption of the Hurst exponent in the selection of IMFs
to reconstruct the speech. This EMD and Hurst-based (EMDH)
approach is evaluated in speech enhancement experiments con-
sidering environmental acoustic noises with different indices of
nonstationarity. The results show that the EMDH improves the
segmental signal-to-noise ratio and an overall quality composite
measure, encompassing the perceptual evaluation of speech
quality (PESQ). Moreover, the short-time objective intelligibility
(STOI) measure reinforces the superior performance of EMDH.
Finally, the EMDH is also examined in a speaker identification
task in noisy conditions. The proposed technique leads to the
highest speaker identification rates when compared to the baseline
speech enhancement algorithms and also to a multicondition
training procedure.

Index Terms—Empirical mode decomposition, hurst exponent,
index of nonstationarity, speaker identification, speech enhance-
ment.

I. INTRODUCTION

T HE suppression of acoustic distortion in noisy speech
signals is still an important research topic. The main issue

of the speech enhancement techniques is concerned with the
accurate estimation of the noise statistics, particularly, in real
nonstationary environments. The classical estimators are based
on voice activity detectors (VAD). The power spectrum of the
noise components is then computed as a smoothed adaptation
of its past values obtained during the speech pauses. These pro-
cedures show reasonable accuracy for stationary background
noises but they cannot precisely estimate time-varying spectra.
The difficulty in tracking nonstationary noises becomes more
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evident for long speech segments and low signal-to-noise ratio
(SNR). The minimum statistics (MS) [1] and the improved
minima controlled recursive averaging (IMCRA) [2] algo-
rithms were proposed to deal with these situations. Thus, the
estimation of the noise power spectrum is applied to each time
frame even during speech activity. However, these approaches
are inaccurate in tracking highly nonstationary noises [3]. Re-
cent contributions, such as the unbiased minimum mean-square
error (UMMSE) [4] algorithm, have been proposed to estimate
the power spectrum of nonstationary noises with shorter delays.
In the literature, time-frequency (TF) analysis, e.g. wavelets,

have also been adopted for speech enhancement. In such pro-
posals [5], [6], the wavelet decomposition is applied to the noisy
speech signal, and a decision criteria identifies the least cor-
rupted components before the reconstruction of the enhanced
version of the speech signal. Different from the power spec-
trum-based methods, the TF-based ones do not require explicit
estimation of the noise statistics.
In the past few years, other TF speech enhancement so-

lutions [7]–[9], based on the empirical mode decomposition
(EMD) [10], have been introduced in the literature. The EMD is
a nonlinear time-domain adaptive method for decomposing sig-
nals into a series of oscillatory intrinsic mode functions (IMF)
and a residual. As opposed to the wavelet decomposition, the
EMD does not require a set of basis functions to properly
analyze the target signal. In fact, the IMFs obtained with the
EMD depend only on the target data. Moreover, the EMD
is not restricted to stationary signals. In [7], the EMD-based
detrending (EMD-DT) technique was proposed to separate any
kind of target signal from a corrupting slowly-varying trend.
The EMD-based filtering (EMDF) was presented in [9] as a
post-enhancement approach to remove residual low-frequency
noise from previously enhanced speech signals. Although the
EMDF showed promising objective quality results for speech
corrupted with stationary noises, lower improvement was
obtained with the nonstationary Babble noise (refer to [9]).
Speech enhancement techniques are generally evaluated in

terms of their improvement in the speech quality. The segmental
signal-to-noise ratio (SegSNR) and its frequency-domain ver-
sion (the frequency-weighted SegSNR - fwSegSNR [11])
are examples of the commonly used speech objective
quality measures. The spectral subtraction (SS) [12], the
minimum mean-square error short-time spectral amplitude
(MMSE-STSA) [13] and the optimally-modified log-spec-
tral amplitude (OMLSA) [14] estimators are examples of
approaches that achieve interesting objective quality im-
provement. However, a comparative study [15] of these
noise-reduction algorithms showed that they are not capable
of increasing the speech intelligibility. This situation becomes
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more challenging in nonstationary noisy scenarios due to the
inaccurate noise statistics tracking [16].
This paper introduces a novel EMD-based speech enhance-

ment technique in which the noise components of each IMF are
identified and selected by its Hurst exponent [17] statistics. The
resulting or least corrupted IMFs are used to reconstruct the en-
hanced version of the speech signal. In the proposed EMDH
technique, the IMFs selection and the speech reconstruction are
performed on a frame-by-frame basis. The EMDH is investi-
gated considering both quality and intelligibility objective mea-
sures. It is shown that the proposed approach achieves speech in-
telligibility gain even in highly nonstationary noisy conditions.
The EMDH technique is also evaluated as a post-enhancement
approach to the OMLSA and theWiener filtering algorithm [18]
with the UMMSE noise estimator [4].
The EMDH evaluation experiments are conducted with

speech signals corrupted with four real acoustic noises con-
sidering five different values of SNR. The experiments also
include the computation of the index of nonstationarity (INS)
[19] of the acoustic noises. Five baseline algorithms, namely
SS, OMLSA, UMMSE, EMDF and EMD-DT, and four ob-
jective measures are adopted for the speech enhancement
experiments. In terms of speech quality, the EMDH achieves
the highest SegSNR and composite measure results for the
highly nonstationary noises (e.g., Babble). Moreover, it out-
performs the baseline EMDF and EMD-DT techniques for all
the noise sources. The fwSegSNR and the short-time objective
intelligibility (STOI) [20] measures are used to evaluate the
intelligibility gain of the proposed and baseline methods. The
best fwSegSNR improvement is obtained for the EMDH as a
post-enhancement approach to the UMMSE. Regarding STOI,
the EMDH outperforms the five baseline techniques.
The speech enhancement with the EMDH is also examined in

speaker identification (SI) experiments conducted in noisy en-
vironments. The accuracy results show that the use of speech
utterances processed with the EMDH substantially improves
the overall SI performance in comparison to the noisy signals
without use of the EMDH. Moreover, the adoption of EMDH
leads to the best SI results when compared to the other speech
enhancement techniques and also the use of a multicondition
training procedure [21].
The remainder of this paper is organized as follows. Section II

introduces the EMDH algorithm, including the basic concepts
of the EMD and the definition of the Hurst exponent. Descrip-
tions of the baseline speech enhancement techniques are pre-
sented in Section III. The objective measures used to evaluate
the EMDH performance in terms of speech quality and intel-
ligibility are briefly described in Section IV. The speech en-
hancement experiments are detailed in Section V. Then, the re-
sults obtained with the EMDH and the baseline approaches are
presented and discussed. In Section VI, the basic concepts re-
garding the speaker identification task are introduced. The SI ac-
curacy results obtained with the speech enhancement techniques
are also presented in Section VI. Finally, Section VII concludes
this work.

II. EMDH SPEECH ENHANCEMENT TECHNIQUE

The first step of the proposed EMDH speech enhancement
technique is to decompose the noisy speech signal into a set of

Fig. 1. The first five intrinsic mode functions obtained from the decomposition
of a speech segment spoken by a male speaker.

IMFs using the EMDmethod. Then, the Hurst exponent is com-
puted on a frame-by-frame basis from each of the resulting IMFs
to determine which of them are mainly composed by noise. Fi-
nally, an enhanced version of the speech signal is reconstructed
using the remaining IMFs.
In the literature, the wavelet decomposition has been widely

used for time-frequency analysis. In this work, the EMD is
adopted due to two main advantages over the wavelets-based
approach. Firstly, the wavelet decomposition is based on a
set of pre-defined basis functions, which does not necessarily
fits well to all kinds of signals. Moreover, since it uses linear
time-invariant filters, the wavelet decomposition is not adapt-
able to local or temporary variations in the input signal. On the
other hand, the EMD analyzes the speech signal in an entirely
adaptive way, and it is completely based on the local properties
of the input signal. It makes the EMD suitable for nonstationary
signal analysis and also assures the completeness of the signal
reconstruction using the IMFs.

A. Empirical Mode Decomposition

The general idea of the EMD is to analyze a signal be-
tween two consecutive extrema (minima or maxima), and de-
fines a local high-frequency part, also called detail , and a
local trend , such that . The first IMF
is then composed of the local details, , obtained from all
the consecutive extrema of . The high versus low-frequency
separation procedure is iteratively repeated over the residual

, leading to a new IMF and a new residual. Fig. 1 illustrates
the first five IMFs obtained from decomposing a sample speech
segment of 500 ms collected from the TIMIT [22] database.
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The algorithm proposed in [10] for decomposing the input
signal can be summarized in the following steps:
1) Identify all extrema (local minima and maxima) of ;
2) Obtain the upper ( ) and lower ( ) envelopes
by interpolating1 the local maxima and minima, respec-
tively;

3) Compute the local trend as the average between the upper
and lower envelopes, i.e., ;

4) Calculate the detail component as ;
5) Iterate on the residual local trend .
The IMFs must have zero mean and all their local maxima

and minima must be positive and negative, respectively2. If the
detail component, obtained in step 4, does not follow these prop-
erties, steps 1 to 4 are repeated with in place of . This
process, called sifting, is repeated until the new can be con-
sidered as an IMF. For the next IMF, the sifting process is ap-
plied on the residual .
From the EMD algorithm, it can be noticed that the total

number of extrema is reduced from one IMF to the next. The
waveform of each mode can be interpreted as a zero-mean am-
plitude and frequency modulated (AM-FM) signal. Note from
Fig. 1 that the first IMF is composed of faster oscillations than
the second, which in its turn has faster fluctuations than the third,
and so on. It means that, at each time interval, the EMD applies a
high-frequency versus low-frequency separation between IMFs.
Thus, the first modes must present the high-frequency content of
the signal. Moreover, as can also be noted from Fig. 1, the cutoff
frequency between consecutive IMFs is time-varying and signal
dependent.
Since the EMD algorithm can only be applied if there are at

least two extrema in the last computed residual , any input
signal can be decomposed in a finite number of IMFs. If
the -th IMF is denoted as and a total of IMFs are
extracted from , then

(1)

where is the last residual obtained from the EMD algorithm.
In [23], it was shown that, when applied to fractional

Gaussian noises (fGn), the EMD behaves like a dyadic filter-
bank with overlapping band-pass filters. In this analysis, the
first IMF is interpreted as the output of a high-pass filter with a
non-negligible content in its lower half-band. For the remaining
modes, each IMF is roughly composed of the upper half-band
part of the last residual that results from the previous
iteration.

B. EMDH: Hurst-based IMF Selection

The EMD algorithm states that, if a speech signal is de-
composed as in (1), its reconstruction using only a subset of the
first IMFs,

(2)

1Cubic splines are generally adopted to obtain the envelopes.
2These restrictions were defined since in the original EMD proposal [10] the

IMFs are afterwards demodulated using the Hilbert transform.

Fig. 2. The continuous lines indicate the values of (a) variance and (b) of
IMFs obtained from a clean speech utterance collected from TIMIT database.
The dashed lines represent the corresponding values from the same speech seg-
ment corrupted by Factory noise with SNR of 0 dB.

would lead to the removal, at each time-frame, of the low-fre-
quency components of . In [9], the authors showed that the
energy content of a clean speech signal is mostly concentrated
in the first four IMFs. Thus, they concluded that any value of

in (2) is enough for a good speech signal reconstruction.
The continuous line in Fig. 2(a) indicates the variance

estimated from the samples of each IMF obtained from an-
other speech utterance collected from the TIMIT database,
i.e., , where is
the total number of speech samples. It is noticeable that, in
agreement with Fig. 1, there is an increase in the IMF energy
(variance) from the first to the second IMF. Moreover, Fig. 2(a)
also shows that the modes with the highest indices ( )
present lower energy values than the first ones. The dashed line
in Fig. 2(a) represents the variance values obtained with the
speech segment corrupted by a real Factory noise, extracted
from NOISEX-92 database [24], with SNR of 0 dB. Note the
sudden variance increase from IMFs 5 to 9, which is due to the
low-frequency components of the corrupting noise.
The main issue of the proposed EMDH technique is the adop-

tion of the Hurst exponent [17] to decide which IMFs should
be selected for the speech signal reconstruction. Let the speech
signal be represented by a stochastic process , with the nor-
malized autocorrelation coefficient function (ACF, ) de-
fined by

(3)

where is the mean of and is the time lag. The ACF of
a fractional Gaussian noise is given by [25]

(4)

where is the Hurst exponent of . The value is
defined by the ACF decaying rate whose asymptotic behavior is

(5)

The Hurst exponent expresses the time-dependence or scaling
degree of and is related to its spectral characteristics.
Within the whole range , the power spectral density
can be shown to be proportional to when [25].
For , is constant over the whole frequency
spectrum (e.g., white noise), whereas low frequencies are
prominent in the case where , and in particular when



900 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 5, MAY 2014

( or pink noise). Due to such characteristics, the
Hurst exponent was proposed in [26] to compose a speech
feature vector and successfully applied to speaker recognition.
In this work, the wavelet-based estimator [27] was adopted to
obtain the values of the IMFs on a frame-by-frame basis.
The wavelet-based Hurst estimator can be described in three
main steps as follows:
1) Wavelet decomposition: the discrete wavelet transform
(DWT) is applied to successively decompose the input
sequence of samples into approximation ( ) and
detail ( ) coefficients3, where is the decomposi-
tion scale ( ) and is the coefficient index
of each scale.

2) Variance estimation: for each scale , the variance
is evaluated from the detail coeffi-

cients, where is the number of available coefficients for
each scale . In [27], it is shown that ,
where is a constant.

3) Hurst computation: a weighted linear regression is used to
obtain the slope of the plot of versus .
The Hurst exponent is estimated as .

Fig. 2(b) illustrates the average values of of different IMFs
estimated from a TIMIT clean speech signal and the same cor-
rupted by the Factory noise (Fig. 2(a)). The EMD is firstly used
to decompose the speech signals. Then, the wavelet-based Hurst
estimator is applied to each IMF (refer to Section II-B). The
Hurst exponent is estimated from non-overlapping frames of
512 samples, which corresponds to 32 ms with sampling rate of
16 kHz, using the Daubechies filters [28] with 12 coefficients
and the 3-12 scales. It can be seen that the first IMFs (e.g.,
1-3), corresponding to the high frequency components, have

. Moreover, for the highest IMF indices (e.g., 7-9) the
values are close to the unity, where the noise components are

usually concentrated [29], [30]. This fact can also be observed
in the speech signal corrupted with the Factory noise, where the
low-frequency energy content ( ) is concentrated on the
IMFs . It shows that the exponent estimation enables
the identification criteria to select the IMF low-frequency noise
components.

C. EMDH Speech Signal Reconstruction

The EMDH algorithm starts with the decomposition of the
input noisy speech into modes according to (1). Windowed
IMFs (w-IMF) are then obtained by splitting each mode into
non-overlapping short-time frames,

w-IMF
IMF

elsewhere,
(6)

where is the frame index and is the
fixed time-duration of the frames. In a consecutive step, the
wavelet decomposition is applied to all the windowed IMFs,
w-IMF , in order to estimate and store their Hurst expo-
nent. Thus, a vector of Hurst values, , with compo-
nents ( ) are obtained for each frame index . The
next step is to determine, for each frame, the index of the last

3The subscript /w/ is used to discriminate the detail ( ) and trend ( )
components of EMD, from the detail ( ) and approximation ( )
coefficients of the wavelet decomposition.

windowed IMF whose value of is below a given threshold,
i.e., . If represents the enhanced speech
signal, then each of its frames is reconstructed as

w-IMF (7)

and is finally given by

(8)

In the proposed EMDH, the IMF selection is exclusively based
on the Hurst exponent estimated from short-time segments.
This frame-by-frame analysis avoids that sudden changes in
the power spectrum of nonstationary noises affect the IMF
selection of the entire speech signal.
To avoid discontinuities, the following procedure is applied

in the signal reconstruction. Suppose that the speech frame is
reconstructed with a smaller number of w-IMFs than the next.
Thus, there is at least one index such that w-IMF is
included in the reconstruction of frame , but w-IMF
is not in frame . Then, the samples of the half-right part
of w-IMF are multiplied by the samples of the half-right
part of the Hanning window whose size equals the frame dura-
tion. Therefore, the value of the last sample of w-IMF
turns to zero and the continuity of the reconstructed speech
signal is preserved. The analogous procedure is adopted when
any IMF is used in the reconstruction of frame and not of
frame .

III. SPEECH ENHANCEMENT BASELINE TECHNIQUES

This Section briefly describes the five baseline speech en-
hancement techniques adopted in this work. The SS, OMLSA
and UMMSE apply the short-time Fourier transform (STFT)
to firstly obtain an estimate of the noise power spectrum. Fol-
lowing, the identified noise components are subtracted or com-
pensated from the STFT of the noisy signal to improve the
speech quality.

A. Spectral Subtraction

Let be a speech utterance corrupted by an additive noise
. Thus, it can be written , where

represents the clean speech signal. By applying the STFT to the
above relation, it can be written

(9)

where and are the frequency bin and the time frame indices,
respectively.
The first step of SS [12], [31] is to estimate the noise power

spectrum using the classical VAD-based approach.
Then, the clean speech power spectrum is estimated as [31]

(10)

In (10), the spectral floor parameter ( ) and the time-varying
oversubtraction factor ( ) are set as in [31]. The spectrum of
the enhanced signal is then estimated using the phase of the
noisy speech signal, and the enhanced speech signal is
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finally reconstructed by overlapping and adding its inverse
Fourier transform.

B. OMLSA

The second baseline technique adopted in this work applies
the IMCRA [2] to obtain an estimate of the noise power spec-
trum. Then, the OMLSA [14] is used to reconstruct the en-
hanced version of the clean speech. The IMCRA noise estimator
is composed of two iterations. Firstly, a VAD is defined based
on the minimum noisy speech power spectrum values obtained
from a set of past frames. In a second stage, this VAD is used to
determine the speech presence probability for
each frequency bin and each time frame. The noise power spec-
trum estimation is recursively given by

(11)

where is a time-varying smoothing parameter that de-
pends on .
After the noise spectrum estimation, the OMLSA method re-

constructs the enhanced speech signal by minimizing the
mean-square error of the log-spectral amplitude. The gain func-
tion that leads to the spectral amplitude of the opti-
mally reconstructed speech is defined in [14] as

(12)

where is a function of the a priori SNR (refer to
[14]), and the minimum value is defined by a subjective
criteria. All the parameters used in the OMLSA and IMCRA
implementation, including the bias compensation factor for the
noise estimation, are the same as those adopted in [2], [14].

C. UMMSE

In the third speech enhancement baseline procedure, the un-
biased minimum mean-square error (UMMSE) noise power es-
timation [4] is adopted to track the noise spectrum. In this pro-
posal, the authors combined speech presence uncertainty to the
estimator originally proposed in [32], and found that the esti-
mation of the noise power spectrum can be updated
every time frame via the recursive smoothing

(13)

where is a smoothing factor and the noise periodogram esti-
mate depends on the speech presence and absence
probabilities and on the noise power spectrum estimated from
the last frame. The main issue of adopting the UMMSE is that,
unlike IMCRA, it does not require a minimum search within
a given number of past frames. It leads to shorter delays in the
noise estimation. Besides, UMMSE does not require a bias com-
pensation factor.
Following the procedure in [4], the UMMSE noise estimator

is followed by the speech enhancement algorithm proposed in
[18]. The Wiener filtering gain is based on the estimation of
the a priori SNR, which is obtained with the decision-directed
approach proposed in [13]. The UMMSE approach was imple-
mented in C++ and validated by reproducing the results of noise
power estimation obtained with theMATLAB code provided by
the authors [4].

D. EMDF

The main issue of the EMD-based filtering is to identify the
number of IMFs that will be used in the speech signal recon-
struction, according to (2). In [9], the authors showed that, for
clean speech, the variance of decreases for the highest
IMF index . In Section II-A (refer to Fig. 2(a)), it was also
demonstrated that, in the case of low-frequency noise corrup-
tion, variance peaks would appear at IMFs with high indices.
Thus, a selection criteria is defined based on the IMF variances.
In these situations, the IMF index is determined by the min-
imum variance value that occurs prior to the identified peak. The
EMDF algorithm can be described as follows:
1) Decompose the target speech signal using EMD, as in
(1);

2) Compute the variances from the samples of each IMF, i.e.,
, where is the

total number of speech samples;
3) Identify the first variance peak such that

and , with ;
4) Find the index of the minimum variance value that oc-
curs prior to , which means that ,

and ;
5) Reconstruct the speech signal with IMFs, according to
(2), with .

In the example of speech corrupted with Factory noise shown
in Fig. 2(a), the identified indices are and . In
[9], the EMDF was proposed as a post-enhancement approach
to the OMLSA technique. In this work, it is also directly applied
to the noisy speech signals.

E. EMD-DT

The EMD-based detrending and denoising method was pro-
posed in [7] as a simple way of splitting a target signal from su-
perimposed slow oscillations. In the EMD-DT, the last IMF of
index used in the signal reconstruction, is defined by the stan-
dardized means of the IMFs. The idea is to remove the IMFs
whose empirical standardized mean significantly departs from
zero. For this purpose, the standardized mean of each IMF is
computed as

(14)

and the EMD-DT algorithm searches for the first IMF, with
index ( ), for which is com-
pared to the root mean square of the standardized mean of the
first four modes multiplied by a threshold , i.e.

(15)

Finally, the enhanced version of the target signal is recon-
structed as in (2). In this work, the threshold in (15) is
empirically set to .
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IV. SPEECH OBJECTIVE QUALITY AND

INTELLIGIBILITY MEASURES

This Section introduces the objective quality and intelligi-
bility measures adopted for the evaluation of the EMDH tech-
nique. While the SegSNR and the composite measure are used
to evaluate the speech quality, the fwSegSNR [11] and the STOI
[20] are considered for intelligibility.

A. Segmental SNR

The time-domain segmental SNR is used to measure speech
quality and it is defined as

(16)

where is the frame length (in samples), is the frame shift,
is the total number of frames, and and are the

discrete-time representations of the clean and enhanced speech
signals, respectively. In this work, the SegSNR values are ob-
tained with frame size of 32 ms with 75% overlapping corre-
sponding to the values and samples with
16 kHz sampling rate. For the SegSNR computation, the SNR
of each frame is limited between dB and 35 dB [11]. In
Section V, the results are presented in terms of SegSNR im-
provement, which is here defined as the SegSNR from the en-
hanced speech subtracted from the values obtained from the
noisy signals. The same definition is adopted for the composite
and fwSegSNR improvement.

B. Overall Composite Quality Measure

In [33], the authors evaluated the correlation between five ob-
jective measures and three subjective rating scores: signal dis-
tortion, background noise distortion and overall quality. Then,
in order to achieve higher correlation with the subjective scores,
three composite measures were proposed as the linear combina-
tion of the existing objective measures. For the overall speech
quality, the composite measure was defined as [33]

(17)

where PESQ is the perceptual evaluation of speech quality, LLR
is the log-likelihood ratio and WSS is the weighted spectral
slope distance. In this work, the overall composite measure (17)
is computed considering the wideband version of PESQ, as de-
fined by the ITU-T recommendation P.862.2.

C. Frequency-Weighted SegSNR

The adoption of the frequency-weighted SegSNR is mo-
tivated by the experiments results described in [16], which
demonstrated that the fwSegSNR is highly correlated to the sub-
jective speech intelligibility. For the fwSegSNR computation,
the spectra of the clean ( ) and enhanced ( )
speech signals are obtained by dividing their entire bandwidth
into frequency bands using Gaussian-shaped filters.
Then, the fwSegSNR is computed as

(18)

where and are the frame and frequency band indices, respec-
tively. As proposed in [11], the signal-dependent weighting
function is defined by . The SNR
values computed at each frame and each frequency band are
also limited to range of .

D. Short-Time Intelligibility Objective Measure

The short-time objective intelligibility measure [20] was pro-
posed as a correlation-based method to evaluate the speech in-
telligibility degradation caused by the speech enhancement pro-
cedures. It was shown in [20] that STOI has high and very
close correlation to subjective intelligibility rates obtained with
speech signals enhanced by noise-reduction algorithms. Fol-
lowing the procedure presented in [20], the clean and the noisy
versions of the speech signal are divided into short-time frames
and grouped in 15 one-third octave bands. For each frame and
each band , the intermediate intelligibility measure, ,
is defined as the correlation coefficient between the temporal
envelope vectors obtained from the clean and the noisy speech
signals. Finally, the STOI measure is given by averaging the in-
termediate values over the 15 one-third octave bands and all
speech frames.
In [20], a monotonic nonlinear mapping was applied to

the STOI results to predict the percentage of correct words
achieved in subjective listening tests with native people. The
results showed good precision considering the enhanced speech
signals from two evaluated databases. In this work, the pre-
dicted intelligibility scores are obtained by applying a mapping
function to the STOI results,

(19)

with and . The values of and in
(19) are the same as those found in [20]. However, it is important
to mention that their exact values are not crucial since
is a monotonically increasing function for any . It means
that, a higher value of also implies a higher value for

. On the other hand, the evaluation of intelligibility rate
prediction ( ) instead of the absolute STOI value pro-
vides a more practical way to examine the intelligibility of the
speech enhancement procedures.

V. SPEECH ENHANCEMENT EVALUATION EXPERIMENTS

In this Section, the objective measures presented in
Section IV are firstly used to measure the EMDH perfor-
mance in terms of speech quality (composite, SegSNR) and
intelligibility (fwSegSNR, STOI). The STOI is followed by the
mapping function in (19) to predict the speech intelligibility
scores.
For the speech enhancement experiments, a subset of 24

speakers (16 male and 8 female) is randomly selected from the
TIMIT speech database [22]. It leads to a total of 240 speech
segments, 10 per speaker, with sampling rate of 16 kHz and
average time duration of 3 seconds.
Four acoustic noises (Babble, Factory, Helicopter and Train)

are used to corrupt the speech signals considering five SNR
values: 10 dB, 5 dB, 0 dB, 5 dB and 10 dB. The noises
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Fig. 3. Spectrograms for 3-seconds segments of the acoustic noises: (a) Babble, (b) Factory, (c) Helicopter, and (d) Train.

Fig. 4. The INS values obtained for 3-seconds segments of the acoustic noises: (a) Babble, (b) Factory, (c) Helicopter, and (d) Train. Dashed lines indicate the
corresponding values for the threshold for the stationarity tests.

are collected from the NOISEX-92 [24] and the Freesound.org4

databases: Babble and Factory from the former and Helicopter
and Train from the latter. The time-varying spectral behavior of
the selected noises are shown in Fig. 3. Note that Babble, Fac-
tory and Train noises present spectral components fluctuating
over the entire voice frequency band (0-4 kHz). On the other
hand, the spectrogram of the Helicopter noise is characterized
by constantly repetitive energy impulses mainly at frequency
values lower than 2.5 kHz.
In the EMDH algorithm presented in Section II-C, the value

of the threshold is crucial to determine the portion of the
low-frequency noise that is removed from each speech frame.
If , the low-frequency noise components will be re-
moved from the signal. The suppression of the low-frequency
components is due to the spectral characteristics of the acoustic
noises adopted in this work (refer to Fig. 3). Moreover, such
kind of low-frequency spectrum is widely found in real acoustic
noises [29]. Although any other value can be adopted for the

, in the following experiments it is set to in order
to remove the noise components without distorting the speech
signal.
The index of nonstationarity [19] is here adopted as a time-

frequency approach to objectively examine the nonstationarity
of each acoustic noise. The INS values computed from segments
of the four noises, are depicted in the continuous lines of Fig. 4.
The time scale is the ratio of the length adopted in the
short-time spectral analysis ( ), and the total time duration
( seconds) of the noises sample sequences. The noises

4http://www.freesound.org.

are considered as nonstationary whenever their INS values are
above the threshold [19], which are shown in the dashed lines
of Fig. 4.
The INS results indicate that the Babble, Factory and Train

noises are nonstationary for all time scales. Babble and Train
noises achieve INS values greater than 30 and 20, respectively.
Since for most of the time scales their INS values are substan-
tially greater than the stationarity threshold defined as

, these noises are considered as highly nonstationary. As it
can be seen, Factory noise is also nonstationary but as its INS
values are lower than 8, it can be identified as moderately non-
stationary. On the other hand, the Helicopter noise achieves very
low INS values ( ) and, in general, below the defined station-
arity threshold. Thus, it is here considered as stationary noise.
It is interesting to mention that the short-time impulses shown
in Fig. 3(c) are captured by the INS of the Helicopter noise for
the shortest time scale.

A. Speech Quality Evaluation

The proposed EMDH speech enhancement technique is
firstly evaluated in terms of the segmental SNR. The SegSNR
improvement (in dB) obtained with the proposed and the base-
line approaches are depicted in Fig. 5. The top curves represent
the SegSNR gain for the highly nonstationary noises, and those
in the bottom are obtained from the noises with lower INS.
Note that, in comparison to the other EMD-based techniques,
the EMDH presents the highest improvement for most of the
noise conditions. When compared to the SS, OMLSA and
UMMSE, the EMDH also achieves the best performance for
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Fig. 5. The SegSNR improvement (dB) obtained with the EMDH and the base-
line techniques.

most of the input SNR values considering the highly nonsta-
tionary noises. The OMLSA leads to the highest SegSNR gain
for the other noise sources. However, even for such noises the
proposed EMDH achieves the greatest SegSNR improvement
for the highest SNR values, i.e., Factory with SNR dB and
Helicopter with SNR of 10 dB.
Fig. 6 shows the improvement in the SegSNR result obtained

with the EMDF and EMDH applied as post-enhancement to the
OMLSA and UMMSE techniques. In this scenario, the best re-
sults are achieved with the OMLSA followed by the EMDH.
Note that the adoption of the EMDH improves the SegSNR re-
sults for all the four noise sources, mainly for the highly non-
stationary ones. In comparison to the OMLSA results (Fig. 5),
the greatest contribution of the proposed technique is for Babble
noise. For this noise source with SNR of dB, the SegSNR
gain is increased from 2.7 dB with OMLSA to 4.1 dB with
OMLSA followed by EMDH, corresponding to a difference of
1.4 dB.
As a complement to the segmental SNR, the overall quality

composite measure is also evaluated for the speech enhance-
ment approaches. The improvement obtained with the EMDH
and the baseline techniques are depicted in Fig. 7. Note that
the EMDH outperforms the other EMD-based techniques for al-
most all the input SNR values. The only conditions for which the
EMDF and the EMDHpresent similar performance are the Train
and Helicopter noises with SNR of 0 dB. When compared to the
STFT-based algorithms, the EMDH also achieves the highest
improvement for the highly nonstationary noises, i.e., Babble
and Train. For the other two noises, the OMLSA leads to the
best performance for SNR dB, while the EMDH obtains
the highest gain for SNR dB.
It can also be noted from Fig. 7 that, unlike the EMDH, the

STFT-based techniques decrease the overall quality composite

Fig. 6. The SegSNR improvement (dB) with the EMDH and EMDF as post-
enhancement to the OMLSA and UMMSE techniques.

Fig. 7. The overall quality composite measure improvement obtained with the
EMDH and the baseline techniques.

measure results for the highly nonstationary noises with SNR
dB. The poor performance in such conditions can be ex-

plained by the inaccurate estimation of the time-varying power
spectra of such acoustic noises. Even the UMMSE approach,
which adopts a noise tracking method with shorter delays, is
not able to accurately suppress the noise components from the
speech signal. Since the EMDH technique does not require the
estimation of the noise components, it seems to be a good solu-
tion for situations with highly nonstationary noises.
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Fig. 8. The overall quality composite measure improvement with the EMDH
and EMDF as post-enhancement to the OMLSA and UMMSE techniques.

The composite results considering the post-enhancement
procedures are shown in Fig. 8. Here, the EMDH also out-
performs the EMDF for most of the noise conditions. Again,
the speech enhancement approaches that adopts the OMLSA
technique achieve the highest improvement for the noises with
the lowest INS values, i.e., Factory and Helicopter. For the
Train noise, the UMMSE followed by the EMDH obtains the
best results for the SNR dB. Finally, both the UMMSE
+ EMDH and UMMSE + EMDF approaches present similar
performance for Babble noise.

B. Speech Intelligibility Evaluation

The fwSegSNR gain obtained from the proposed and base-
line speech enhancement procedures are illustrated in Fig. 9.
Once more, considering the EMD-based techniques, the EMDH
achieves the best results for most of the input SNR values for
the three nonstationary noise sources. For the Factory noise,
for example, the EMDH achieves a fwSegSNR improvement of
2.0 dB for SNR of 5 dB. When compared to the STFT-based
approaches, the EMDH also leads to the best fwSegSNR re-
sults for the Babble noise. Different from the segmental SNR
results shown in Fig. 5, the UMMSE outperforms the OMLSA
algorithm for Factory noise. The OMLSA technique leads to the
highest improvement for Helicopter and Train noises.
Fig. 10 shows the fwSegSNR improvement obtained with

EMDF and EMDH as post-enhancement techniques. It is worth
to mention that the EMDH also outperforms the EMDF for
almost all the noise conditions. Different from the objective
quality measures (Figs. 6 and 8), the best performance is here
achieved with the speech enhancement procedures that adopt
the UMMSE technique. The UMMSE + EMDH leads to the
highest fwSegSNR improvement for most of the input SNR
values considering all the acoustic noise sources. From Figs. 9
and 10, it can be observed that the OMLSA technique provides
negative gain for Babble noise, also in post-enhancement sce-

Fig. 9. The fwSegSNR improvement (dB) obtained with the EMDH and the
baseline techniques.

Fig. 10. The fwSegSNR improvement (dB) with the EMDH and EMDF as
post-enhancement to the OMLSA and UMMSE techniques.

narios. Similar results were found in [15] and it means that, al-
though speech enhancement techniques improve speech quality,
they can also degrade speech intelligibility. The STOI is here
adopted as a complementary measure to examine the EMDH
performance in terms of speech intelligibility.

C. STOI Prediction

In Table I, the intelligibility prediction rates are obtained from
the STOI of the processed speech signals followed by the map-
ping function in (19). It can be noted that the highest and lowest
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TABLE I
INTELLIGIBILITY RATE PREDICTION (%) OBTAINED WITH STOI RESULTS

FOLLOWED BY THE MAPPING FUNCTION IN (19)

STOI results for all the speech enhancement procedures are ob-
tained for Factory and Babble noises, respectively. All noise
sources lead to high intelligibility scores ( )
for SNR dB. However, large differences in STOI predic-
tion is found with the lowest SNR values. It can be seen that the
proposed EMDH technique outperforms the other EMD-based
approaches for three acoustic noises: Factory, Helicopter and
Train. The proposed technique also leads to the best overall
STOI results: 82.40%.
Note from Table I that, when compared to the SS, OMLSA

and UMMSE, the EMDH achieves the best average results for
the three nonstationary noises. For instance, the predicted intel-
ligibility score with Babble noise is improved from 67.89%with
UMMSE to 71.28% with EMDH. The overall STOI result for
OMLSA and UMMSE are 81.25% and 81.81%, respectively.
The results in Figs. 7–10 and in Table I emphasize that the

proposed EMDH technique increases the time and frequency-
domain SegSNR and also achieves the highest overall STOI
prediction scores. In the next Section, the EMDH is evaluated
in speaker identification experiments conducted in noisy envi-
ronments. For this purpose, the EMDH is used as a pre-pro-
cessing step for the SI system and its performance is compared
to other speech enhancement procedures adopted in this work
(SS, OMLSA, UMMSE, EMDF and EMD-DT).

VI. ISSUES ON SPEAKER IDENTIFICATION

Speech enhancement solutions have been examined to pro-
vide robustness to speaker identification systems [34]–[36]. In

this work, SI experiments are conducted to evaluate the con-
tribution of the proposed EMDH and the baseline speech en-
hancement techniques on improving the accuracy of SI in non-
stationary noisy conditions.
A speaker identification system is generally composed of

a training and a test phase [37]. During the training phase,
the system extracts the sets of speech features and generates
the speakers models. In the test phase, the speech features are
obtained from the test speech utterances and compared to the
speakers models. The main goal of the SI task is to identify to
which of the enrolled speakers the test utterance belongs to. In
the literature, SI systems based on the Mel-frequency cepstral
coefficients (MFCC) [38] features and the Gaussian mixture
speaker model (GMM) [37] are widely used due to their high
recognition accuracies for clean speech [39]. However, their
performance can be severely degraded when the test speech
signals are corrupted by acoustic noises, i.e., a noisy mismatch
condition between training and test phases [40]. As shown
in [21], significant improvement can be achieved by using a
colored-noise-based multicondition training (Colored-MT).
In the experiments here described, the EMDH technique is
applied to the test speech utterances to provide noise robustness
to the SI system. This means that the MFCC feature vectors are
extracted from the enhanced versions of the speech signals.
1) MFCC Extraction: After the acquisition and pre-pro-

cessing, the speech signal is divided into overlapping short-time
frames. The fast Fourier transform (FFT) is applied to each
speech frame, and its spectral envelope is then obtained using
Mel-scaled bandpass filters [38]. Frequencies in the Mel scale
( ) are related to frequencies in the linear scale ( ) as

. The Mel scale is usually applied
in speaker identification due to its good representation of the
human auditory system. Considering the number of filters
in the Mel-frequency filterbank [38] and the log-energy
output of the th filter, the MFCC coefficients are calculated
as ,
where is the number of cepstrum coefficients. As com-
monly adopted in the literature [37] [40], filters in the
Mel-scaled filterbank are used for the MFCC extraction.
2) GMM: The GMM ( ) of a speaker is de-

fined as a linear combination of Gaussian components,
, where is a -dimensional speech

feature vector, are the mixture weights, with ,
and are the Gaussian densities with mean vectors and
covariance matrices . Thus, the GMM of speaker can be
parametrized by .
During training, the parameters of are estimated as to

maximize the likelihood function ,
where the speech feature matrix is composed of feature
vectors extracted from each frame of the training utterance
available for speaker . For the tests, the decision rule of the
SI task is based on the maximum log-likelihood criteria [37]. It
means that the identified speaker is the one that maximizes
the sum .
3) Colored-MT: The multicondition training was proposed

due to the mismatch between the training and test phases caused
by acoustic noise corruption. The idea is to improve the SI
system robustness by artificially corrupting the training utter-
ances. For this purpose, the authors in [40] used white noise as-
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TABLE II
SPEAKER IDENTIFICATION ACCURACIES (%) OBTAINED

WITH AND WITHOUT SPEECH ENHANCEMENT

suming no information concerning the acoustic noises is avail-
able. In [21] it was proposed the use of artificially generated
colored-spectra noises to obtain higher SI results. The moti-
vation is that colored spectra have been measured in several
acoustic noises [29]. Finally, the maximum log-likelihood cri-
teria is adapted to consider all the speaker models obtained from
the multicondition data.
4) Experiments and Results: The SI experiments are con-

ducted with a subset of 168 speakers from TIMIT database.
From each of the 10 utterances available per speaker, eight are
concatenated and used to train the speaker models and the other
two are separated for tests. Each of the test
utterances are then corrupted with the four noises considering
SNR values of 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. Therefore,
a total of tests are conducted, leading to an
accuracy precision of 0.015 considering a confidence degree of
95%. The speech feature vectors are composed by coef-
ficients, extracted from frames of 32 ms with 50% overlapping.

Gaussian densities are used for each speaker model.
The third column of Table II presents the identification accu-

racies, in %, obtained from the SI experiments conducted with
no speech enhancement (NSE). As a reference, the identifica-
tion rate considering clean test utterances is 98.9%. Note that
the identification rate varies from 96.7% with Babble noise and
SNR of 20 dB to 7.1% for Helicopter noise and SNR of 0 dB. In
average, the SI accuracy ranges from 56.0% to 37.4% for these
same noise sources.
The SI results obtained with the speech enhancement tech-

niques are also shown in Table II. It shows that the EMDH out-

Fig. 11. Speaker identification accuracies obtained with EMDH, Colored-MT
and without any enhancement, considering four different acoustic noise sources:
(a) Babble, (b) Train, (c) Factory, and (d) Helicopter. The average results are
indicated in the legends.

performs the baseline approaches for all the noise sources. The
average accuracy increases from 46.5% with noisy speech to
62.8% with utterances processed by the EMDH technique, cor-
responding to 16.3 percentage point (p.p.) gain. Considering the
different noise conditions, the best improvement is obtained for
the Factory noise with SNR of 10 dB, from 43.8% to 85.4%,
corresponding to 41.6 p.p. difference.
Regarding the other EMD-based approaches, the proposed

technique improves the overall SI accuracy in 5.6 p.p. and
9.6 p.p. in comparison to the EMDF and the EMD-DT, respec-
tively. It is important to notice that, although outperformed
by EMDH, the EMDF and EMD-DT also improve the SI
performance for all the noise sources. On the other hand, the SS
and OMLSA techniques degrade the SI accuracies for the four
noises, while the UMMSE improves the average identification
rate only for Factory noise. It is interesting to mention that, the
EMD-based techniques which achieved the best STOI results
(refer to Table I), also presented the best identification rates.
This indicates that future speech enhancement proposals should
consider the SI aspects to improve their intelligibility gain.
Fig. 11 compares the speaker identification results obtained

with the proposed EMDH technique (dashed lines) to those ob-
tained with the Colored-MT (thick continuous lines) for each
noise source. The corresponding average identification scores
are shown in the legends. The accuracies obtained with noisy
speech (i.e., no speech enhancement) are also depicted with thin
continuous lines in Fig. 11. For the Colored-MT, artificial
acoustic noises are generated according to [30] with Gaussian
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distribution and power spectral density proportional to .
As in [21], the colored-spectra are defined by (white
noise), (pink noise) and (red or brown noise). The
colored noises are used to corrupt the training utterances with
SNR of 15 dB, since it led to the best overall results in prelimi-
nary test. The results in Fig. 11 show that the EMDH technique
leads to the best average identification results for the four noise
sources. The overall result obtained with Colored-MT is 58.0%,
i.e., 4.8 p.p. lower than EMDH.

VII. CONCLUSION

This paper has introduced a new speech enhancement tech-
nique based on EMD and on a Hurst-based IMF selection
criteria. The Hurst exponent statistics is adopted to identify and
select those IMFs that are most affected by the noise compo-
nents. The speech signal is finally reconstructed considering
the least corrupted IMFs. Several experiments were conducted
using four different acoustic noises, three of them nonstationary.
The EMDH performance was compared to five baseline speech
enhancement algorithms, and it was also evaluated as a post-
enhancement approach. The proposed technique improved
four objective measures that are highly correlated with speech
quality and intelligibility. Moreover, the EMDH outperformed
the baseline EMDF and EMD-DT approaches for most of the
noise conditions. The superior performance of the proposed
speech enhancement technique was also verified in the speaker
identification experiments conducted in noisy environments.
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