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Abstract—This paper investigates the fusion of Mel-frequency
cepstral coefficients (MFCC) and statistical pH features to improve
the performance of speaker verification (SV) in non-stationary
noise conditions. The -integrated Gaussian Mixture Model
( -GMM) classifier is adopted for speaker modeling. Two dif-
ferent approaches are applied to reduce the effects of noise corrup-
tion in the SV task: speech enhancement and multi-style training
(MT). The spectral subtraction with minimum statistics (MS/SS)
and the optimally-modified log-spectral amplitude with improved
minima controlled recursive averaging (IMCRA/OMLSA) are
examined for the speech enhancement procedure. The MT tech-
niques are based on colored (Colored-MT), white (White-MT)
and narrow-band (Narrow-MT) noises. Six real non-stationary
noises, collected from different acoustic sources, are used to cor-
rupt the TIMIT speech database in four different signal-to-noise
ratios (SNR). The index of non-stationarity (INS) is chosen for
the stationarity tests of the acoustic noises. Complementary SV
experiments are conducted in realistic noisy conditions using the
MIT database. The results show that the best SV accuracy was
obtained with the MFCC + pH features fusion, the MS/SS and the
Colored-MT.

Index Terms—Features fusion, Hurst exponent, multi-style
training, non-stationary acoustic noise, speaker verification,
speech enhancement, -GMM.

I. INTRODUCTION

S PEAKER verification or authentication is an interesting so-
lution for applications with security concerns, such as ac-

cess control, data security and forensic investigations [1] [2].
Recently, it has become more evident the need for security so-
lutions for portable devices, such as laptops and smartphones.
It implies that SV systems must keep good performance at dif-
ferent conditions, even in adverse noisy environments.
The conventional speaker verification framework, which

adopts the GMM [3] classifier and the universal background
model (UBM) [4], is generally composed of a training and a
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test phase [5]. During training, the system extracts some sets
of speech features and generates the UBM and the speakers
models. In the test phase, the speech features are obtained from
the test utterances and compared to the speakers models. The
main goal of the SV task is to decide whether to accept or reject
a claimed identity. SV systems based on MFCC [6] features and
GMM-UBM generally achieve high recognition accuracies for
clean speech [7]. However, their performance can be severely
degraded when the speech signals are corrupted by acoustic
noises [8].
Recently, expanded versions of the GMM-UBM SV systems

have been proposed in the literature. In [9], support vector
machines (SVM) were applied in the GMM supervector space
using Nuisance Attribute Projection (NAP) [10] to compensate
for the channels effect. Other state-of-the-art SV systems that
deal with channel compensation are the eigenvoice [11] and
the joint factor analysis (JFA) [12]. In [13], the factor analysis
was also used to define a new set of features called i-vectors.
Currently, most of the SV systems use the i-vectors together
with the probabilistic linear discriminant analysis (PLDA) [14]
to produce good performance in clean conditions. However,
the analysis of such systems in noisy scenarios is rarely found
in the literature.
One of the most interesting solutions for robust speaker

recognition submitted to real acoustic noises is the multi-style
training (MT) [15], [16], [8], [17]. The MT was originally
proposed to improve the speech recognition in noise [15]. The
idea is to reduce the training and test mismatch by corrupting
the utterances available for training. In [8], assuming no in-
formation about the noise sources, the authors proposed the
use of artificial white and narrow-band noises to corrupt the
training speech with different SNR values and improve speaker
recognition performance. In [17], artificial noises with colored
spectra and a single SNR value were adopted to corrupt the
training utterances and provide robustness to speaker identifi-
cation. This colored-noise-based multi-style training was also
applied in [18] for the speaker verification task.
In this paper, the MT based on colored (Colored-MT) [17],

white (White-MT) and narrow-band (Narrow-MT) [8] noises
are applied with the -GMM [19] classifier to improve the noise
robustness of speaker verification. The conventional GMM is
considered as a particular case of the -GMM ( ). Be-
sides theMFCC and their corresponding velocity ( ) and accel-
eration ( ) coefficients, the pH [20] statistical feature is also
used to compose the speech feature vectors. In [20], the authors
showed that the fusion of the MFCC and pH features improves
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the performance of singleMFCC-based speaker verification and
identification tasks, when submitted to telephone channel distor-
tion. One of the main goals of this paper is to investigate the con-
tribution of the pH feature to reduce the equal error rate (EER)
of the speaker verification systems in non-stationary acoustic
noisy environments. For this purpose, SV experiments are con-
ducted with speech utterances, collected from the TIMIT data-
base [21], corrupted by six acoustic noises (Babble, Engine,
Factory, Machine Gun, Military Vehicle, and Ringtone) with
different values of the index of non-stationarity (INS) [22], con-
sidering SNR of 5, 10, 15 and 20 dB. Moreover, the pH feature
is also evaluated in SV experiments conducted in realistic noisy
conditions using the MIT Mobile Device Speaker Verification
Corpus [23].
Another solution adopted in this work to reduce the noise ef-

fects in SV is to enhance the speech signals. A common ap-
proach used in speech enhancement involves a voice activity
detector (VAD) and the short-time spectrum analysis (STSA)
to estimate the noise spectral components from segments with
no speech presence. If the noise is stationary, these components
can then be suppressed from the entire speech by spectral sub-
traction (SS) [24], [25]. However, when the stationarity of the
noise is not assured, the estimated noise spectrum must be up-
dated even during voice activity [26]. The minimum statistics
(MS) [27] and the improved minima controlled recursive aver-
aging (IMCRA) [28] techniques were proposed to follow such
requirement. Speech enhancement techniques have been eval-
uated for speaker verification [29] and identification [30] con-
sidering stationary background noises. In this work, two speech
enhancement procedures are used in the SV experiments to en-
hance the speech signals in non-stationary noise environments.
The first one adopts the spectral subtraction combined with the
MS technique. In the secondmethod, the IMCRA is followed by
the optimally-modified log-spectral amplitude (OMLSA) [31]
speech estimator. Both MS/SS and IMCRA/OMLSA are evalu-
ated as pre-processing steps for the speaker verification system.
The remainder of this work is organized as follows. Section II

provides a general description of a speaker verification system.
It includes the MFCC and pH speech features and the -GMM
classifier. The same Section presents the colored-noise-based
multi-style training. The basic concepts of the MS/SS and
IMCRA/OMLSA speech enhancement techniques are pre-
sented in Section III. Section IV describes the speaker verifi-
cation experiments evaluated in different noisy environments
with TIMIT database. The experiments are conducted with
and without the Colored-MT and speech enhancement. In
Section V, these same techniques are evaluated with the MIT
database. Finally, Section VI concludes this work.

II. SPEAKER VERIFICATION

The main issue of this paper is to evaluate the contribution of
different techniques in the speaker verification task. It includes
the MFCC and pH features fusion, the -GMM classifier as an
alternative to the regular GMM, and the use of speech enhance-
ment algorithms with multi-style training. The SV experiments
are conducted in a conventional GMM-UBM system without
using any other score normalization or channel compensation
approaches. The recent expansions of the GMM-based system,

Fig. 1. Representation of the MFCC extraction.

such as the JFA or the i-vectors with PLDA, are not used since
they would require a highly time consuming training step for
each of the SV experiments conducted in this work.
This Section describes the verification function adopted in

this work, including the speech features used for the speakers
representation, the -GMM and also the multi-style training
proposed for the noise robust speaker classification. The main
goal of the verification task is to decide whether the observed
speech segment belongs or not to the claimed speaker. Given
the feature matrix obtained from the speech signal and a
hypothesized speaker , the SV decision corresponds to the hy-
pothesis test between

belongs to
does not be long to

(1)

The commonly used criteria to decide if belongs to is based
on the likelihood ratio test,

(2)

where represents the model of speaker , is the uni-
versal backgroundmodel (UBM) and is the decision threshold.
In (2), is the probability density function (pdf) of
given it was spoken by the claimed speaker . In the same

way, is the pdf of given that it is not from the
claimed speaker, i.e., the speech segment belongs to an intruder.
The UBM is a single model that is generally obtained from the
speech of many speakers that are not enrolled to the system.
The choice of the decision threshold ( ) is a tradeoff between

the false rejection (FR) and false acceptance (FA) errors. These
probabilities are usually evaluated by detection error tradeoff
(DET) curves. In this work, the equal error rate is used to mea-
sure the performance of the SV system. The EER corresponds
to the operating point where the probabilities of false rejection
( ) and false acceptance ( ) are equal. The NIST 2012
Speaker Recognition Evaluation Plan [32] defines the primary
cost function ( ) as a combination of and . In
this work, the minimum value of (min ) is
used as a complementary SV performance measure.

A. Speech Features

After the signal pre-processing (digitization, quantization and
pre-emphasis), the speech features are extracted or estimated
from short-time (20 ms - 30 ms) duration frames [33]. In this
work, the speech feature matrices are formed by MFCC (with
and ) and also by the MFCC + pH features fusion.
1) MFCC: The Mel-frequency cepstral coefficients [6] are

the most widely used features for speaker verification. Fig. 1
depicts the schematic of the MFCC extraction.
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Fig. 2. An example of a pH vector estimation using the with 3 decomposition stages.

After the acquisition/pre-processing step, the fast Fourier
transform (FFT) is calculated from each speech frame. The
spectral envelope of the modulus of the FFT is then obtained
using Mel-scaled bandpass filters. Frequencies in the Mel scale
( ) are related to frequencies in the linear scale ( ) as

. The Mel scale is usually
applied in speaker verification due to its good representation of
the human auditory system. TheMFCC are finally calculated by
applying the discrete cosine transform (DCT) to the log-energy
outputs of the filters in the Mel-frequency filterbank.
2) pH: The pH is a vocal time-frequency feature and was

proposed and evaluated for speaker identification and verifica-
tion systems [20]. It consists of a vector of Hurst ( )
values, which expresses the time-dependence or scaling degree
of the speech signal.
Let the speech signal be represented by a stochastic process
, with the normalized autocorrelation coefficient function

defined as

(3)

The Hurst is defined by the decaying rate of , whose
asymptotic behavior is given by

(4)

The Hurst exponent is related to the spectral characteristics of
the speech signal. Within the whole range , the power spec-
tral density (PSD) of , , can be shown to be propor-
tional to when . For , is constant
over the whole frequency spectrum (e.g., white noise), whereas
low frequencies are prominent in the case where , and
in particular when ( or pink noise).
The wavelet-based multi-dimensional estimator (M-dim-

wavelets) [20] was proposed as the pH feature extractor and
is based on the method described in [34]. The estimation
procedure is as follows:
• Wavelet decomposition: discrete wavelet transform
(DWT) is applied to successively decompose a se-
quence of samples into approximation ( ) and detail
( ) coefficients, where is the decomposition scale
( ) and is the coefficient index of each
scale.

• Hurst computation (HC): for each scale , the variance
is evaluated from the detail

coefficients, where is the number of available coeffi-
cients for each scale . In [34], it is shown that

, where is a constant. A weighted linear
regression is then used to obtain the slope of the plot
of versus . The value of is given by

.
• pH vector composition: the pH vector is composed of

values of . The compo-
nent is computed from the decomposition of the entire
speech signal. The other values ( ) are
obtained after re-applying the DWT decomposition to
each of the detail sequences. Fig. 2 shows an example
of the pH estimation considering decomposition
stages, i. e., .

In this work, the Daubechies wavelets filters [35] are ap-
plied for the DWT decomposition. The multi-resolution anal-
ysis [36] adopted in the DWT is a powerful theory that enables
the detail and approximation coefficients to be easily computed
by a simple discrete time convolution. It is important to note
that the linear computational complexity of the pyramidal algo-
rithm to obtain the DWT is where is the signal samples
length, while the FFT (fast Fourier transform), used to obtain
the MFCC, is .

B. -GMM

In [19], the authors proposed the -integration of Gaussian
densities as an extension of the classical GMM for speakers
modeling in a speaker identification task. The -integration
generalizes the linear combination adopted in the conventional
GMM. The essential idea was to improve the identification
performance by emulating an integration process similar to
what occurs inside a human brain. In [19], it was shown that
the -GMM outperforms the conventional GMM in speaker
identification task with speech transmitted through a fixed
phone channel. In [18], the -GMM was applied to a speaker
verification task in noisy conditions, and it also achieved better
results than the GMM.
Given a speaker model , composed of Gaussian den-

sities , , the -integration of the densities is
defined as [19]

(5)
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Fig. 3. Block diagram with the general work-flow adopted in this paper. The highlighted blocks indicate the two techniques used to improve the performance of
the speaker verification in noise.

where are non-negative mixture weights constrained to
, is a normalization constant, and is given

by

(6)

From (6), the inverse of can be calculated by

(7)

The -GMM of speaker can be rewritten as

(8)

Note that the -integration of the Gaussian densities in (8)
turns into a linear combination for , which corresponds
to the conventional GMM. By choosing values of smaller
than -1, the -GMM classifier emphasizes the larger probability
values, and de-emphasizes the smaller ones. The idea of this
work is to use this property to compensate the training and test
mismatch caused by environmental acoustic noises.
The -GMM of a speaker is completely parametrized by

the mean vectors ( ), covariance matrices ( ) and the weights
of the Gaussian densities,

(9)

Such parameters are estimated using the adapted expectation-
maximization (EM) algorithm [37] as to maximize the likeli-
hood function

(10)

where , , are the vectors extracted from the
training speech segment of speaker , that compose the fea-
ture matrix . The likelihood expressed in (10) is also used in
the likelihood ratio test in (2) for the decision criteria.

C. Multi-Style Training Based on Colored Noises

The multi-style training technique consists of artificially
corrupting the training utterances to reduce the mismatch
between the training and test phases, and thus, improve the
performance of the speakers classification systems. In the
colored-noise-based multi-style training (Colored-MT) [17],
artificial noises are generated with Gaussian distribution and

PSD characterized by the shape , with
[38].
For each speaker , multiple copies of the clean training ut-

terance are corrupted by the artificial colored noises, re-
sulting in multicondition data sets ( ). Fol-
lowing the procedure addressed in Section II-B, -GMM
( ) for speaker are obtained from the corrupted data sets
. In analogy to (9), each of these models are parametrized by

(11)

A single model of speaker is obtained by the collection
of all the parameters estimated in (11), i. e.,

(12)

In order to adapt the Colored-MT to the -GMM classifier,
the likelihood is adjusted to follow the -integration of
all Gaussian densities:

(13)

where is a new normalization constant. As in [18], the Col-
ored-MT is also adopted to obtain the -GMM for the UBM.
Fig. 3 illustrates a block diagram with the general work-flow

of the speaker verification system considered in this work.
The highlighted blocks indicate the two techniques, multi-style
training and speech enhancement, that are used to improve the
performance of speaker verification in noise conditions.

III. SPEECH ENHANCEMENT

The estimation of the noise power spectrum has a major im-
pact on the speech enhancement performance. Since the six
acoustic noises considered in this work present highly time-
varying spectral characteristics (refer to Section IV-A), the es-
timation of the noise spectrum should not be restricted to seg-
ments where voice is absent. This motivates the use of the MS
and IMCRA noise estimators to compose the speech enhance-
ment techniques. The idea is to evaluate the contribution of the
MS/SS and IMCRA/OMLSA on reducing the effects of non-sta-
tionary noises in speaker verification.

A. MS/SS

The noise estimation based on MS does not need a VAD
to distinguish between speech activity and pause phases. The
MS is based on the fact that the noisy speech spectrum eval-
uated over short-time frames often decays to the noise power
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level, even during speech activity. Thus, an accurate estimation
of the noise power at each frequency band can be obtained by
searching for the minimum power levels of noisy speech among
a few recent past frames.
Let be a speech utterance corrupted by an additive noise
. Thus, it can be written , where

represents the clean speech signal. The analysis of using
the short-time Fourier transform (STFT) leads to the following
relation

(14)

where and are the frequency bin and the time frame indexes,
respectively.
The first step of the MS algorithm is to obtain a recursively

smoothed periodogram,

(15)
where is a time- and frequency-dependent smoothing
parameter that varies in the range . The noise
power is estimated as the minimum values of obtained
from the past frames,

(16)

Since, in general, the minimum value of a random variable
is smaller than its average, the noise estimation based on

is biased towards smaller values. Hence, a bias
compensation factor is needed, and the estimated noise power
spectrum is given by

(17)

In this work, the bias compensation factor in (17)
and the optimum value for the smoothing parameter in
(15) are obtained following the procedures presented in [27].
After the noise power spectrum estimation, the spectral sub-

traction is used to reconstruct the enhanced speech. In the SS
method [25], the noise power is firstly subtracted from the noisy
speech power spectrum,

(18)

where is the oversubtraction factor. The clean
speech power spectrum is then estimated as [25]

(19)

where is the spectral floor parameter. Following the
procedure in [25], the spectral floor parameter is set to 0.01 and
the value of is determined according to the a posteriori
SNR: the higher the SNR, the lower the oversubtraction factor.
The minimum value of is set to 1, corresponding to a
SNR of 20 dB.
From (19), the spectrum of the enhanced signal is estimated

using the phase of the original speech signal, i. e.,

(20)

Finally, the enhanced speech signal is reconstructed by
overlap-adding the inverse Fourier transform of .

B. IMCRA/OMLSA

The second speech enhancement technique applied in this
work uses the IMCRA [28] to obtain an estimate of the noise
spectrum, and the OMLSA speech estimator [31] to reconstruct
the enhanced version of the clean speech. The IMCRA method
is composed of two iterations. Firstly, a voice activity detector
(VAD) is applied for each frequency bin and time frame. In a
second stage, this VAD is used to improve the robustness of the
noise tracking during voice activity.
During the first iteration, a noisy spectrum is obtained by fre-

quency and time smoothing:

(21)

where is a smoothing parameter and is a normal-
ized Hanning window function constrained to
, where . Based on the comparison among the values
of , and , calculated using (16), a
VAD decision criteria is defined for each time and frequency
indexes,

speech absence
speech presence

(22)

In the second iteration, a new smoothing spectrum is
estimated only considering the power spectral components for
which the VAD detected primarily noise,

(23)

If the denominator in (23) equals zero, it is replaced
by . From the relation between

, and its minimum values
, a probability

is defined for the speech presence in time and frequency. The
noise power spectrum estimation is recursively
given by

(24)
where is a time-varying smoothing parameter that de-
pends on and on a constant

(25)

Finally, a bias compensation factor is considered to
obtain the noise spectrum estimation

(26)

After the noise spectrum estimation, the OMLSA method re-
constructs the enhanced speech signal by minimizing the
mean-square error of the log-spectral amplitude, i.e.,

(27)
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Fig. 4. Spectrograms of the acoustic noises: (a) Babble, (b) Engine, (c) Factory, (d) Machine Gun, (e) Military Vehicle and (f) Ringtone.

where is the spectral amplitude of the optimally re-
constructed speech. The power spectrum of the reconstructed
signal is calculated by multiplying the spectrum of the noisy
speech signal by a gain function,

(28)

The gain function that leads to the minimum mean-
square error in (27) is defined in [31] as

(29)

where is the estimated speech presence probability,
is a function of the a priori SNR at frame and

frequency bin , and the minimum value is defined by
a subjective criteria. For a detailed description of the OMLSA
method, please refer to [31].

IV. EXPERIMENTS AND RESULTS WITH NON-STATIONARY
ACOUSTIC NOISES

The speaker verification experiments presented in this Sec-
tion are conducted with 158 enrolled speakers collected from
the TIMIT database [21]. The speech database is composed of
10 utterances per speaker, with sampling rate of 16 kHz and
time average duration of 3 seconds. From each of the enrolled
speakers, eight utterances are separated to train the models, and
the other two are used for tests, i.e., a total of 316 tests. This
leads to 316 genuine or true speaker trials for the false rejec-
tion rate evaluation. For the false acceptance evaluation, 49612
impostor trials were used which corresponds to 314 (excluding
the speech utterances of the speaker in test) x 158. Regarding
the UBM, preliminary experiments are conducted to evaluate
the impacts of the UBM composition on the SV results. The
EER results are presented and discussed in Section IV-B. They
are used to define the number of UBM speakers in the other SV
experiments with the TIMIT database.

A. Noise Database

Six acoustic noises (Babble, Engine, Factory, Machine Gun,
Military Vehicle and Ringtone) are used to corrupt the speech
utterances. The Ringtone noise is available in FindMIDIs.com1.
The other noises are collected from the NOISEX-92 database
[39]. Before being added to the speech utterances, the noises are
re-sampled from its original sampling rate (8 kHz for Ringtone

1http://www.findmidis.com.

and 19.98 kHz for the other five) to 16 kHz. Different values of
SNR are considered for the corruption of the speech signals.
Fig. 4 depicts the spectrograms obtained from segments of

the six acoustic noises. Note that Babble, Machine Gun and
Ringtone noises show high oscillation in their spectrograms. On
the other hand, Factory, Engine and Military Vehicle have low
spectra variation.
1) Index of Non-Stationarity: In [22], the authors define a

process as stationary relatively to an observation scale if its
local short-time spectra at all different time instants are sta-
tistically similar to its global spectrum. The authors proposed
the index of non-stationarity as a measure of the time-varying
spectra of a random process based on the time-frequency
approach. The stationarity test is conducted by comparing the
spectral components of the signal to a stationary reference,
called surrogates.
In this work, the index of non-stationarity (INS) is evaluated

following the procedure in [22]. If the noise is stationary, its
INS value is expected to be close to unity. On the other hand,
the larger the INS the more non-stationary the noise.
The INS values of the 6 acoustic noises are presented in

Fig. 5. The time scale indicates the relation between the
size of the window adopted for the STSA ( ) and the total
length ( ) of the noise. The values of represent the threshold
for the stationarity test, considering a confidence degree of
95%. Thus,

signal is stationary;
signal is non - stationary

(30)

The comparison between the INS and values indicate that
the six noises are non-stationary. As expected, the noises whose
spectrograms show high oscillation also present the highest
values of INS. On the other hand, while the visual inspection
of the spectrograms of Factory and Military Vehicle noises
indicates low time-varying behavior, the INS of these noises
are also above the threshold. This means that they are also
non-stationary. Hence, this reinforces the relevance of consid-
ering different time scales in the stationarity evaluation. The
main issue of using these noises is to evaluate the effect of their
non-stationarity on the accuracies of the speaker verification.

B. UBM

In the study presented in [40], it was shown that there is no
need for a large number of speakers in the UBM for a conven-
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Fig. 5. Indexes of Non-Stationarity of the acoustic noises: (a) Babble, (b) Engine, (c) Factory, (d) Machine Gun, (e) Military Vehicle and (f) Ringtone.

TABLE I
AVERAGE EER (%) OF SPEAKER VERIFICATION EXPERIMENTS WITH THE
MFCC + AND THE -GMM CLASSIFIER FOR THE TIMIT DATABASE

tional GMM-UBM SV system. In the present work, a set of pre-
liminary SV experiments based on the -GMM classifier is used
to evaluate the EER with the number of UBM speakers varying
from 10 to 160. For this purpose, 12-dimensional MFCC vec-
tors are obtained from frames of 20 ms and 50% of frame over-
lapping. It is adopted a Mel-scale filterbank with 26 filters and
a pre-emphasis factor of 0.97. The MFCC are then appended
to their corresponding velocity and acceleration coefficients,
leading to MFCC + vectors with 36 coefficients.
The speakers (50% male, 50% female) adopted to compose

the UBM are randomly chosen from another subset of the
TIMIT database. The UBM is obtained from the concatenation
of the utterances from all the selected speakers. The UBM and
the speakers models are composed with 32 Gaussian densities
and four values of : , , and . The average EER
results, considering tests with the four values of SNR (5, 10,
15 and 20 dB), are shown in Table I. These results correspond
to the values of that lead to the lowest average EER for each
UBM composition: for 20 and 80 speakers,
for 10 and 160, and for 40. Note that there is no sig-
nificant improvement in the average EER when larger numbers
of speakers are adopted for the UBM with the TIMIT database.
Due to such results and to large amount of SV experiments
conducted in this work, the number of UBM speakers in all the
remaining SV experiments conducted with the TIMIT database
is set to 10 (5 male and 5 female).

C. Experiments with MFCC + pH Fusion

In the first set of experiments, the speaker verification task is
evaluated with the -GMM considering the MFCC and also the
fusion of the MFCC and pH speech features. The experiments
are repeated considering the velocity and acceleration coeffi-
cients of the MFCC (MFCC + ). None of the multi-style
training and speech enhancement techniques are used in these
experiments.
The pH are estimated from two consecutive speech frames

using Daubechies wavelets filters [35] with 12 detail coeffi-
cients and scale range from 3 to 9. As in [18], a total of
decomposition scales are considered to obtain the values.
Thus, including the component obtained from the speech
signal, these 9-dimensional vectors are DCT-transformed to
compose the pH feature matrices. Thus, for experiments with
the MFCC + pH fusion, feature vectors are formed by 21
components. The MFCC + and MFCC + + pH vectors
are composed of 36 and 45 coefficients, respectively.
Table II presents the EER results for the experiments con-

ducted with test utterances corrupted by the six acoustic noises
and also for the clean speech. Note that, for the three compo-
sitions of the feature vectors (MFCC + , MFCC + pH and
MFCC + + pH), the best accuracy, i.e., the lowest average
EER, is obtained with . For this value of , the MFCC
+ + pH fusion achieves the best average performance for
5 of the noise sources. This leads to an absolute improvement
of 1.30% in the average EER results, from 11.51% with MFCC
+ , to 10.21%. The use of pH feature vectors reduces the
EER results in 4.44% for Factory noise and SNR of 5 dB, from
26.27% to 21.83%. In comparison to the conventional MFCC-
and GMM-based system, also included in Table II, an absolute
average EER reduction of 2.58% is achieved with the MFCC +

+ pH and -GMM. It can also be seen from Table II that,
in comparison to MFCC + , the MFCC + pH fusion shows
the best average accuracies for 4 of the 6 noise sources. The av-
erage EER is reduced from 11.51% to 10.67% for . This
means that, in comparison to the velocity and acceleration co-
efficients, the use of pH leads to an overall improvement in the
SV task even with a lower number of components in the feature
vectors.
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TABLE II
EER (%) OBTAINED IN THE SPEAKER VERIFICATION TESTS WITH THE -GMM CLASSIFIER FOR DIFFERENT VALUES OF

Fig. 6. The DET curves obtained with MFCC + + pH with the -GMM
classifier ( ) for test speech signals corrupted by the acoustic noises with
SNR of 15 dB, and also for clean speech.

The DET curves from the experiments conducted with the
MFCC + + pH fusion, and noise corruption with
SNR of 15 dB, and also for the clean speech, are illustrated in

Fig. 6. The EER values are represented by the operating points
where the DET curves cross the black line.
Fig. 7 depicts the DET curves considering the MFCC + ,

theMFCC+ pH and theMFCC + + pH vectors, considering
. The curves are presented according to their indexes

of non-stationarity. While the left curves are related to noises
with the highest INS, those on the right are obtained for noises
with the lowest INS. In these experiments, the noises corruption
adopts SNR of 5 dB. These results reinforce the improvement in
the verification accuracies due to the use of the MFCC and pH
feature fusion in severe noise conditions. Due to the average
improvement obtained with the pH, the MFCC + + pH
features fusion is adopted in all the following experiments.

D. Experiments with Speech Enhancement

In the second set of experiments, the MS/SS and IMCRA/
OMLSA speech enhancement techniques are applied as pre-
processing steps to the SV task (refer to Fig. 3). For both tech-
niques, the noisy speech is split into 50%-overlapping frames
with length of 512 samples. The speaker models are obtained
without any enhancement. Fig. 8 illustrates the suppression of
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Fig. 7. DET curves obtained from experiments with MFCC + (dashed lines), MFCC + pH (thin continuous lines) and MFCC + + pH (thick continuous
lines): (a) Machine Gun and Ringtone, (b) Engine and Babble and (c) Factory and Military Vehicle.

Fig. 8. Spectrograms from a male speaker: (a) clean speech; (b) speech cor-
rupted by Engine noise with SNR of 10 dB and enhanced speech with (c) MS/SS
and (d) IMCRA/OMLSA.

noise from a speech segment corrupted by Engine noise with
SNR of 10 dB. The comparison among the spectrograms of
clean speech, noisy signal and the enhanced speech shows that
both MS/SS and IMCRA/OMLSA techniques are able to sup-
press most of the high energy frequencies of the Engine noise.
However, some of the spectral components present in the clean
speech are also removed by the enhancement techniques.

Fig. 9. The average SegSNR improvements (dB) obtained with the speech
enhancement techniques for different noise sources: (a) Babble, (b) Engine,
(c) Factory, (d) Machine Gun, (e) Military Vehicle and (f) Ringtone.

The segmental SNR (SegSNR) is adopted to objectively mea-
sure the performance of the speech enhancement. The SegSNR
is defined as

(31)

where and are the STFT components defined in (14), is
the set of frames that contain voice and is its cardinality.
Fig. 9 compares the average SegSNR improvement results

obtained with the MS/SS and IMCRA/OMLSA techniques for
the six acoustic noises and for different input SNR values. Note
that IMCRA/OMLSA achieves positive gain for all noise con-
ditions. For the MS/SS, the average SegSNR is not improved
for the 3 noises with highest values of INS, particularly for the
less severe noise levels.
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Fig. 10. The DET curves from experiments with SNR of 5 dB using -GMM.
Dashed curves are obtained with MS/SS and . Continuous curves are
from SV considering without any speech enhancement.

The lowest SegSNR improvement, considering both tech-
niques, is obtained for the Machine Gun noise. The worse
performance is due to the fact that, besides the highest INS
values, the Machine Gun also presents the characteristics of
an impulsive noise (refer to its spectrogram in Fig. 4). As
discussed in [41], although the MS and IMCRA techniques
estimate the noise power every time frame, they can present
inaccurate results on tracking sudden and abrupt changes in the
noise spectrum.
Table III shows the EER results from SV experiments with

test utterances enhanced by both techniques. The results cor-
respond to the values of that led to the best EER results,
which correspond to for MS/SS and for
IMCRA/OMLSA. Note that, except for the Engine noise, the
EER values obtained with MS/SS are much lower than those
obtained with IMCRA/OMLSA.
When compared to the results obtained without the use of a

speech enhancement technique (MFCC + + pH with
in Tab. II), the adoption of the MS/SS leads to a lower av-

erage EER for 5 of the noise sources. The absolute EER reduc-
tion is 11.82% for the Engine and 11.07% for the Factory noise,
both for SNR of 5 dB. Fig. 10 illustrates the contribution of
the MS/SS speech enhancement on reducing the FA and FR er-
rors for 3 different noises: Babble, Factory and Military Vehicle
noises. The only noise for which the EER is not reduced is Ma-
chine Gun. As previously discussed, this is due to the difficulty
of the MS estimator on tracking the power spectra of impulsive
noises.

E. Experiments with Multi-Style Training

In the third set of experiments, the colored-noise-based MT
[17] is applied to improve the robustness of the speaker verifica-
tion system. Following the procedure defined in [17], three arti-
ficial noises are generated for the multi-style training, with col-
ored spectra defined by the PSD decaying rate: (white),

(pink) and (brown). These noises are used to
corrupt all the speech segments available for training with SNR
of 15 dB, including the UBM. Thus, a total of
Gaussian densities are stored for each speaker.
Two other multi-style training techniques are used as

references for the Colored-MT. A white-noise-based MT

TABLE III
EER (%) OF SPEAKER VERIFICATION EXPERIMENTS WITH MFCC + + PH

FEATURES WITH -GMM CLASSIFIER AND SPEECH ENHANCEMENT

(White-MT) [8] is obtained by corrupting multiple copies of
the training utterances with SNR values between 10 and 20 dB,
with step of 2 dB2. Following the procedure in [8], the clean
and corrupted training utterances are then concatenated and
used to train the UBM and speaker models with 128 Gaussian
components. The same procedure is adopted to obtain the
models in the narrow-band-noise-based MT (Narrow-MT).
The narrow-band noise is obtained by passing the white noise
through a low-pass filter with a lower 3-dB cutoff frequency of
800 Hz [8].
SV experiments are conducted with the MT techniques and
-GMM considering the four values of : , , and .

2The SNR range of 10-20 dB is adopted in this work since it led to better
results than the SNR range 4-20 dB adopted in [8].
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Table IV presents the results corresponding to the value of
that led to lowest average EER. Note that the Colored-MT with

achieves the best results for 5 of the 6 noises. For Fac-
tory noise with SNR of 5 dB, the Colored-MT reduces the EER
from 24.05% with White-MT and 18.34% with Narrow-MT to
6.34%. In average, the Colored-MT achieves absolute overall
reduction of 3.14% and 5.04% in comparison to the Narrow-MT
and the White-MT, respectively3.
The results in Table IV also show that the Colored-MT

achieves lower average EER values than those obtained with
speech enhancement (refer to Table III) for 5 noise sources. The
average EER is reduced from 6.85% (MS/SS in Table III) to
6.31%. The Engine noise is the only one for which the adoption
of MS/SS speech enhancement outperforms the Colored-MT.
This fact can be explained by the high energy frequencies
between 1.5 kHz and 2.5 kHz in the spectrum of the Engine
noise (see Fig. 4(b)). It means that the energy of Engine noise is
not concentrated at low-frequency components, as is the case of
colored noises. On the other hand, as shown in Fig. 8, the noise
components related to these frequencies are removed by the
speech enhancement techniques. Thus, the results obtained with
MS/SS and IMCRA/OMLSA are better than those obtained
with Colored-MT for this specific noise source.
It may also be noticed that, when compared to the results ob-

tained without speech enhancement (MFCC + + pH and
in Table II), the use of Colored-MT improves the

average performance of SV for all noise sources. The abso-
lute EER reduction achieves 15.49% for Factory noise with
SNR of 5 dB, from 21.83% to 6.34%. For the highly non-sta-
tionary Ringtone noise the average EER is reduced from 8.85%
to 5.54%. Even for the Machine Gun noise, which presents the
highest values of INS, the performance is improved with the
Colored-MT.

F. Experiments with Speech Enhancement and Multi-Style
Training

In the fourth set of experiments, both the Colored-MT and the
MS/SS speech enhancement are applied to improve the robust-
ness of the SV. For the multi-style training, the same artificial
(white, pink and brown) noises are used to corrupt the training
utterances and obtain the speaker models. Before the extraction
of the MFCC + + pH feature matrices, all the training and
test utterances are enhanced using the MS/SS technique. The
MS/SS is chosen due its significant improvement in the EER
results, when compared to the IMCRA/OMLSA technique.
The EER results obtained with both the MS/SS and the Col-

ored-MT are presented in the last column of Table V. These
results correspond to , which leads to an average EER
slightly lower than those obtained with the other values of .
For comparison, the lowest EER results obtained without any
techniques (Table II), with the MS/SS only (Table III) and the
Colored-MT only (Table IV) are also shown in Table V. It can be
seen that the adoption of both techniques improves the perfor-
mance of the speaker verification for two acoustic noises: En-
gine and Military Vehicle. The overall EER result is reduced
from 6.31% (with Colored-MT only) to 5.84%.

3It is important to mention that, different from the experiments presented in
[8], in this work the evaluation of the multi-style training techniques does not
consider the use of subband features.

TABLE IV
EER (%) OF SPEAKER VERIFICATION EXPERIMENTS WITH MFCC + + PH

FEATURES AND MULTI-STYLE TRAINING WITH -GMM CLASSIFIER

It may be observed that the contribution of the MS/SS for
Engine noise is noticeable: the average EER is reduced from
16.27% to 9.97%. This noteworthy improvement can be ex-
plained by, as discussed in Section IV-E, the presence of the
energy peaks in the Engine noise spectrum that are suppressed
by the MS/SS speech enhancement. On the other hand, the Col-
ored-MT presents only a slight contribution to SV robustness
for this specific noise, since its energy is not concentrated in the
low-frequency part of the spectrum (refer to the spectrograms
in Fig. 4).
Regarding the average EER results obtained for each noise,

note that the MT without MS/SS achieves the best performance
for the 3 highly non-stationary noises (Babble, Machine Gun
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TABLE V
EER (%) OF SPEAKER VERIFICATION EXPERIMENTS WITH MFCC + + PH

FEATURES, MS/SS AND COLORED-MT WITH -GMM CLASSIFIER

and Ringtone). It may also be noted that, for all the noise
sources, the lowest EER results are obtained with the Col-
ored-MT (with and without the speech enhancement).
As a complement to the EER, the minimum value of the pri-

mary cost defined in [32] is also used to measure the SV perfor-
mance. The average min results for each noise in the
four sets of experiments are depicted in Fig. 11. In agreement
with the EER results (Table V), note that the adoption of MS/SS
and Colored-MT leads to the best results for the Engine and the
Military Vehicle noises. For the Factory and Ringtone noises,
the lowest min results are achievedwith themulti-style
training only, while the speech enhancement and the multi-style
training achieve similar average results for the Babble noise. Fi-
nally, Machine Gun is the only noise source for which the SV

Fig. 11. The average min results obtained in SV experiments with
the six noises.

without any technique achieved the best SV performance, with
average result similar to that obtained with MT only.

V. EXPERIMENTS AND RESULTS IN REALISTIC
NOISY ENVIRONMENTS

The contribution of the speech enhancement and the multi-
style training for SV is also evaluated in realistic noisy condi-
tions. For this purpose, SV experiments are also conducted with
the MIT Mobile Device Speaker Verification Corpus [23]. The
MIT database is composed of 48 enrolled speakers and 40 im-
postors. The speech signals were collected with a handheld-de-
vice using an internal microphone and an external headset in
three different environments: an office with low background
noise level, a mildly noisy lobby and a street intersection with
high background noise level. By using this database, the Lom-
bard effect is also taken into account in the SV experiments.
In the text-independent SV experiments here described, it is
adopted the subset of the database that corresponds to all the
lists of names. It means that, for each enrolled speaker and each
test condition, 5 utterances corresponding to spoken names are
used for training and other 5 are available for the tests. The ut-
terances from the impostors are used to obtain the UBM. This
leads to genuine trials and
impostor trials. Only the utterances recorded in the office envi-
ronment were adopted for training the speakers models and the
UBM.
Table VI presents the EER results obtained with -GMM and

three sets of speech features: MFCC, MFCC + and MFCC
+ + pH. Both the MFCC and the pH are extracted in the
same manner as in Section IV. The value achieves the
lowest average EER results when compared to the other values.
For comparison, the EER results achieved with the conventional
GMM ( ) and the MFCC are also shown in Table VI.
When only the external headset is considered, the MFCC +
+ pH features fusion leads to the lowest EER values for the three
different environments. Regarding the adoption of the internal
microphone, the MFCC + and the MFCC + + pH fea-
tures sets achieve similar average performance: 26.2% for the
former and 26.3% for the latter.
The MT techniques are also examined for the SV experi-

ments with theMIT database. The EER results obtained with the
White-MT, the Narrow-MT and the Colored-MT with -GMM
and the MFCC + + pH features are presented in Table VII.
Once again, the lowest EER results are obtained with the value

. Note that, when compared to the results without the
multi-style training (Table VI), the Colored-MT improves the
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TABLE VI
EER (%) OF SPEAKER VERIFICATION EXPERIMENTS WITH

THE -GMM CLASSIFIER FOR THE MIT DATABASE

TABLE VII
EER (%) OF SPEAKER VERIFICATION EXPERIMENTS WITH MFCC + +
PH FEATURES, MULTI-STYLE TRAINING WITH THE -GMM CLASSIFIER AND

SPEECH ENHANCEMENT TECHNIQUES FOR THE MIT DATABASE

SV performance for all the three environments and the two mi-
crophones. For instance, the EER for the external headset and
the office environment is reduced from 9.6% to 8.8%. More-
over, it outperforms the White-MT and the Narrow-MT for all
the six conditions.
The results with the MS/SS speech enhancement technique

are also presented in Table VII. The lowest average EER re-
sults (with and without MT) are obtained with . For
the experiments considering the external headset and the Street
environment, the MS/SS leads to an absolute EER reduction of
12.2%, from 37.0%, without any technique, to 24.8%. In this
specific condition, the SV with the MS/SS outperforms even
the results achieved with the MS/SS and the Colored-MT. It oc-
curs due to the background noise in the Street environment of
MIT database seems to be stationary. Thus, the MS/SS tech-
nique is able to suppress most part of the Street noise from
the speech signals and, consequently, reduce the mismatch be-
tween the training and test phases. For the Lobby environment,
the best performance is achieved with the MS/SS and the Col-
ored-MT. For this scenario, the EER is reduced from 15.7% to
12.5%, which means an absolute reduction of 3.2%. Regarding
the adoption of the internal microphone, the use of the MS/SS
and the multi-style training achieves the best results for all the
three environments.
The average min results obtained with MS/SS and

Colored-MT are shown in Table VIII. In agreement with the
EER results (Table VII), the combination of speech enhance-
ment with the multi-style training leads to the best performance
for the three environments considering the internal microphone.
Regarding the experiments with the external headset, the lowest

TABLE VIII
THE AVERAGE MIN RESULTS OBTAINED

IN SV EXPERIMENTS WITH THE MIT DATABASE

min results in the Street, Office and Lobby environ-
ments are achieved with MS/SS, Colored-MT and MS/SS +
Colored-MT, respectively.

VI. CONCLUSION

This paper examined the fusion use of the MFCC and pH fea-
tures for noise robust speaker verification. The -GMM classi-
fier was adopted for the speakers and UBM modeling. The ex-
periments were firstly conducted with a subset of the TIMIT
database corrupted with six non-stationary acoustic noises and
different values of SNR. The index of non-stationarity of these
noises were also evaluated in this work. Then, the SV was also
evaluated in realistic noisy conditions using the MIT database.
The SV results showed that the use of pH features reduced
the average EER results obtained with MFCC and their cor-
responding velocity and acceleration coefficients. The lowest
average EER were obtained with the -GMM classifier with

and for the TIMIT and MIT databases, re-
spectively. The speaker verification experiments were repeated
with Speech enhancement and multi-style training techniques
were also evaluated to improve the speaker verification results.
Experiments with MFCC + + pH features, , Col-
ored-MT and MS/SS achieved the best overall EER results for
both databases. The minimum value of the measure
was also adopted to reinforce the efficiency of the speech en-
hancement and MT techniques. Finally, the speech enhance-
ment and the multi-style training showed to be good solutions
to improve the SV performance in different noisy conditions.
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