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Speech Enhancement with Nonstationary Acoustic
Noise Detection in Time Domain

R. Tavares and R. Coelho, Member, IEEE

Abstract—This letter proposes a new time domain speech
enhancement technique for signals corrupted by nonstationary
acoustic noises. In this method, the noise components are detected
and attenuated directly from the corrupted speech samples. They
are obtained with a robust estimation of the noise standard de-
viation considering any speech and noise amplitude distribution.
These values are used to define a noise selection threshold. Addi-
tionally, this solution does not require the usage of any spectral
analysis or temporal decomposition as a pre-processing phase.
The experiments results show that the proposed scheme leads to
significant improvement in the speech quality and intelligibility
when compared to competing enhancement approaches.

Index Terms—Index of nonstationarity, robust estimation,
speech enhancement.

I. INTRODUCTION

S PEECH enhancement has been the object of many studies
in the signal processing area. It also underlies a diversity of

applications such as speech and speaker recognition, source lo-
calization, and acoustic emotion identification. The attenuation
of the noise interference is still a major challenge for the quality
and intelligibility improvement of the noisy speech signals. The
main issue concerns the estimation of the noise statistics, par-
ticularly in nonstationary real environments.
Generally, speech enhancement schemes can be classified

by its noise statistics estimation approach, i.e., considering the
spectral or time domain. Conventional spectral solutions as the
spectral subtraction [1] and the minimum mean square error
[2], usually apply the short-time Fourier transform (STFT) and
a voice activity detector (VAD) to estimate the noise power
spectrum in regions where speech is considered absent. These
algorithms can obtain satisfactory results when the acoustic
noise is stationary. However, in real environments acoustic
noises are nonstationary [3] and, in these cases, VAD-based
noise estimators are not able to attain accurate power spectrum
statistics. Alternative estimators [3]–[5] were introduced to deal
with nonstationary noise. In these proposals, the noise power
spectrum is updated every time frame, even during speech
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activity. Nevertheless, they are often inaccurate in the presence
of highly nonstationary noises [6].
Methods that include the estimation of noise statistics in time

domain, e.g., wavelet decomposition, were also used to enhance
noisy speech signals. Their main advantage is that they avoid
the use of the STFT. In [7], a post-processing filtering based
on the empirical mode decomposition (EMD) [8] theory was
employed to remove the residual low-frequency noise after the
usage of a spectral pre-enhancement scheme. This EMD-based
filtering (EMDF) improved the quality of speech signals cor-
rupted by stationary noise. The EMDH [9], [10] technique pro-
posed the application of EMD directly to the noisy speech sam-
ples. The most corrupted components were selected and atten-
uated according to the Hurst exponent ( ) [11] estimated from
short-time frames. EMDH showed promising speech quality
and intelligibility gain for signals collected in highly nonsta-
tionary noisy environments.
This letter introduces a new time domain method to enhance

speech signals corrupted by nonstationary acoustic noises.
Different from the other techniques presented in the literature,
this proposal does not require any time-frequency analysis pro-
cedure such as Fourier transform or temporal decomposition.
Here, the acoustic noise standard deviation is estimated in time
domain using an adaptation of a robust estimator [12] on a
frame-by-frame basis. These values are used to define a noise
selection threshold. The estimation algorithm does not need
any previous knowledge of the noise amplitude distribution.
Thus, the proposed approach can be applied to any kind of
acoustic noise.
Extensive experiments are conducted to evaluate the speech

enhancement scheme. Four objective measures are used to
compare the proposed and baseline techniques: unbiased min-
imum mean-square error (UMMSE) [4], EMDF and EMDH.
Four nonstationary acoustic noises, with different indexes of
nonstationarity (INS) [13], are employed to corrupt the speech
signals with signal-to-noise ratios (SNR) between dB and
10 dB. The results show that the proposed method outperforms
the baseline solutions in terms of speech quality and intelligi-
bility measures.

II. PROPOSED SPEECH ENHANCEMENT METHOD

Speech enhancement techniques are commonly implemented
in four main phases:
1) Pre-processing of the noisy signal using a time-frequency

procedure, e.g., STFT/VAD, EMD or wavelet;
2) Detection or estimation of the noise statistics;
3) Selection and attenuation of the noisy components;
4) Speech signal reconstruction.
The proposed speech enhancement method is performed

without the usage of any pre-processing algorithm (refer to
phase 1). The noise components are detected by considering
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their standard deviation estimated directly from the corrupted
speech samples. The estimated values are used to define the
selection threshold that will compose the enhanced signal. This
is attained on a frame-by-frame basis and in time domain.
The speech enhancement scheme begins with the segmenta-

tion of the noisy speech signal into a set of short-time frames,
, where

is the frame index, 1 is the frame length in samples, and
is the noisy speech sample sequence. For each corrupted speech
frame , the -Dimensional Trimmed Estimator (DATE)
[12] is adopted to obtain the noise standard deviation. Origi-
nally, DATE was defined for additive white Gaussian noise. In
this work, this estimator is adapted and examined to detect the
acoustic noise standard deviation considering unknown speech
and noise amplitude distribution. The estimated noise standard
deviation is then subtracted from each corrupted sample to com-
pose the enhanced speech signal.
The proposed algorithm can be described in three main

phases: noise standard deviation estimation, selection of the
noisy components, and speech signal reconstruction.

A. Noise Detection
The noise standard deviation is estimated in two main steps:

Step 1: preparation of the noisy sample sequence.
• Initialize the detection threshold

(1)

where and for a Gaussian noise
[12].

• Rearrange the noisy sequence by the order of
amplitude values as .

Step 2: estimation of the noise standard deviation.
• Compute : this indicates the number of samples

that has only noise components. The
algorithm assumes that speech amplitude values are
above some known lower bound and that its proba-
bility of occurrence is less than 0.5. According to the
Bienayme-Chebyshev-Markov inequality, this value
can be obtained by , where

and is the confidence degree, which is
assumed to be equal to 95% for a Gaussian noise.

• Verify if there exists an integer

such that: ,
where is the Euclidean norm and

is an adjustment factor
of the detection threshold. If so, then define ;
otherwise, .

• Calculate the standard deviation:

Fig. 1 shows the noise standard deviation values of different
short-time frames of a male speech signal corrupted by the
chainsaw2 noise with SNR of 10 dB. The results obtained
with DATE and the median absolute deviation (MAD) algo-
rithms are indicated in the blue and green lines, respectively.

1In this work, is set to 512 samples, which corresponds to noisy speech
frames with 32 ms duration for a sampling rate of 16 kHz.

2Acoustic noise collected from the Freesound.org database available at:
www.freesound.org.

Fig. 1. Comparison between the standard deviation values estimated from a
speech signal corrupted by the chainsaw noise with SNR of dB .

Note that the results estimated with DATE are much closer to
the real standard deviation values of the acoustic noise. On the
other hand, MAD results are similar to the standard deviation of
the noisy signal. This indicates that the noise standard deviation
is an interesting criteria for the noise components selection and
speech signal reconstruction. These results also demonstrate
that is interesting even when applied to real acoustic
noises.

B. Selection of Noisy Components
The acoustic noise standard deviation values are used to de-

tect segments of the noisy signal where speech is considered
absent. For this purpose, given the value of (refer to step
2, Section II-A), the amplitude value is defined as the
threshold level to select the noise components from the cor-
rupted signal. The amplitude values below this threshold are
treated as noise only. Noise standard deviation values are then
subtracted from the remaining samples to obtain the amplitudes
of the enhanced speech signal.

C. Speech Signal Reconstruction
For the speech signal reconstruction, the -th frame is com-

posed of amplitude values given by

(2)

where . The enhanced speech signal is finally
achieved by concatenating all the frames obtained in (2), i.e.,

.

III. EXPERIMENTS AND RESULTS
Extensive speech enhancement experiments are conducted

with a subset of 24 speakers (16 male and 8 female) of the
TIMIT speech database [14], i.e., 240 speech segments with
sampling rate of 16 kHz and average time duration of 3 sec-
onds. Four nonstationary acoustic noises are used to corrupt
the speech utterances. The babble, factory chainsaw and jack-
hammer noises are selected, respectively, from NOISEX-92
[15] and Freesound.org2 databases. The speech signals are
corrupted considering five SNR values: dB, dB, 0 dB,
5 dB, 10 dB.
Fig. 2 presents the index of nonstationarity results obtained

from segments of the four noises. The INS is here adopted to
objectively examine the nonstationarity of the acoustic noise.
The time scale is the ratio of the length of the short-time
spectral analysis ( ) and the total time duration ( sec-
onds) of the noises sample sequences. For each window length
, a threshold is defined to guarantee the stationarity assump-

tion with a confidence degree of 95%. Thus,
noise is stationary

noise is nonstationary (3)
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Fig. 2. The INS obtained for 3-seconds segments of the acoustic noise:
(a) babble, (b) chainsaw, (c) factory (d) jackhammer. Dashed lines indicate the
corresponding value for the threshold for the stationarity test.

The values of are also shown in the dashed lines of Fig. 2.
From these INS results it can be seen that the four noises are

nonstationary relatively to all time scales. Chainsaw and jack-
hammer noises are here classified as highly nonstationary since
they achieve INS values greater than 100 and 60, respectively.
Babble noise presents INS results in a scale of 4 to 30 and thus,
it is then designated as nonstationary. Factory noise is consid-
ered as moderately nonstationary since its INS values are lower
than 8 for all time scales.

A. Speech Enhancement Baseline Techniques

Three speech enhancement techniques are here examined as
baseline for the evaluation of the proposed solution: UMMSE,
EMDF and EMDH.
1) UMMSE: The unbiased minimum mean-square error es-

timator [4] is adopted to track the noise spectrum. The authors
combined the speech presence uncertainty to update the noise
power spectrum every time frame by using a recursive proce-
dure. UMMSE tracks nonstationary noises with shorter estima-
tion delays than other estimators [3]. Moreover, a bias compen-
sation factor is not required for the estimation.
2) EMDF: Firstly, the EMD-based filtering [7] decomposes

the noisy speech signal into a set of intrinsic mode functions
(IMF). Then, it identifies the number of IMFs that will be used in
the speech signal reconstruction. The selection criteria is based
on the IMF variances. The EMDFwas defined to serve as a post-
enhancement approach to the optimally-modified log spectral
amplitude (OMLSA) [16] technique. In this work, the EMDF is
directly applied to the noisy speech signals.
3) EMDH: This method employs the Hurst exponent ( )

[11] as a criteria to identify the most corrupted IMFs on a frame-
by-frame basis. The Hurst exponent expresses the time-depen-
dence or scaling degree of a signal and is related to its spectral
characteristics. The values were used in [17] to compose a
speech feature vector and successfully applied to speaker recog-
nition. In [18], the Hurst exponent was also adopted for robust
acoustic source localization. The selection criteria defined in
[9] removes the IMFs whose Hurst exponent is above a given
threshold. The remaining IMFs are then used to reconstruct the
enhanced version of the speech signal. When compared to the
UMMSE and EMDF techniques, the EMDH showed superior
speech quality and intelligibility results for highly nonstationary
noises [9].
Table I indicates the computational complexity which refers

to the processing time required for each algorithm evaluated for

TABLE I
NORMALIZED MEAN PROCESSING TIME

512 samples per frame. These values are normalized by the exe-
cution time of the proposed scheme (PRO). Note that PRO and
UMMSE presented very low computational complexity when
compared to the EMD-based algorithms.

B. Speech Quality and Intelligibility Measures

Four objective measures are applied in the experiments. The
segmental SNR (SegSNR) and the overall quality composite
measure (OQCM) [19] are used to evaluate the proposed tech-
nique in terms of speech quality improvement while the short-
time objective intelligibility measure (STOI) [20] and the co-
herence speech intelligibility index (CSII) [21] are adopted to
examine the speech intelligibility.
1) Segmental SNR: The segmental SNR of a speech signal

is defined as , where
and are the STFT of the clean speech and

the noise , respectively, is the frequency bin, is the time
frame index, is the set of frames of with speech presence
and its corresponding cardinality.
2) Overall Quality Composite Measure: The OQCM is

a linear combination of three different objective measures:
the weighted spectral slope (WSS), the log-likelihood ratio
(LLR) and the perceptual evaluation of speech quality (PESQ),

.
These coefficients were defined in [19] by using the multiple
linear regression analysis to maximize the correlation between
the OQCM values and the subjective speech quality results.
3) Coherence Speech Intelligibility Index: CSII is a spec-

tral-based speech intelligibility measure [21] which is computed
by multiplying coherence-based weights to the enhanced speech
in the frequency domain. The signal is firstly split into segments
using 30 ms Hamming windows. These segments are weighted
by the magnitude-squared coherence between the clean and en-
hanced signals estimated across the entire signal. In this work,
the predicted intelligibility scores are obtained by applying the
following mapping function:

(4)

where and .
4) Short-time Objective Intelligibility Measure: STOI [20]

was proposed as a correlation-based method to evaluate the
speech intelligibility degradation caused by speech enhance-
ment solutions. A monotonic nonlinear mapping was applied
to the STOI results to predict the percentage of correct words
achieved in subjective listening tests. In this work, the predicted
intelligibility scores are obtained by the mapping function (4)
with and .

C. Experiments Results

Fig. 3 depicts the SegSNR improvement achieved by the pro-
posed and the baseline techniques with the four acoustic noises
and SNR values. Note that PRO leads to the best SegSNR results
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Fig. 3. The SegSNR improvement obtained with the proposed and the baseline
techniques.

TABLE II
OQCM IMPROVEMENT RESULTS

in almost all noisy conditions. For the highly nonstationary jack-
hammer noise and SNR of dB, an improvement of 5.6 dB
is obtained with the PRO method. The only scenarios where
the PRO does not achieve the best results are for the factory
noise with dB. However, for this same noise source
with SNR of 10 dB, PRO outperforms the baseline solutions in
1.2 dB.
The OQCM improvement scores attained with the PRO and

the baseline techniques are presented in Table II. It can be seen
that the proposed solution outperforms the other time domain
techniques (EMDF and EMDH) for all the noise sources con-
sidering dB. When compared to the spectral-based
UMMSE, PRO achieves the highest improvement for the non-
stationary babble and the highly nonstationary chainsaw and
jackhammer noises.
Fig. 4 presents the predicted intelligibility rates obtained

with the CSII. The proposed solution outperforms all the other
methods in 7% in average for the babble and chainsaw noises.
Considering factory and jackhammer noises with dB,
the UMMSE leads to an average improvement of 5% over

Fig. 4. Intelligibility rate prediction (%) obtained with CSII results.

TABLE III
INTELLIGIBILITY RATE PREDICTION (%) OBTAINED WITH STOI

the other solutions. PRO achieves the best CSII results for
dB.

The predicted intelligibility rates computed with STOI are
shown in Table III. PRO achieves the best STOI results for

dB and for three noise sources: babble, chainsaw
and jackhammer. Considering factory noise, PRO attains the
highest intelligibility rates for SNR of 5 dB and 10 dB. For the
highly nonstationary chainsaw noise, a STOI value of 90.0% is
obtained with PRO, i.e., 4.3% higher than the UMMSE. In gen-
eral, UMMSE leads to the best results with dB.

IV. CONCLUSION

This letter introduced a novel time domain speech enhance-
ment method for signals corrupted by nonstationary acoustic
noise. Several experiments were conducted using acoustic
noises with different INS and SNR values. The SegSNR,
OQCM, STOI, and CSII objective measures demonstrated that
the proposed technique outperforms the baseline approaches in
terms of speech quality and intelligibility for all the acoustic
noises.
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