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Robust Maximum Likelihood Acoustic Energy
Based Source Localization in Correlated Noisy

Sensing Environments
E. Dranka and R. Coelho, Member, IEEE

Abstract—Acoustic energy based localization with wireless
sensor networks is an interesting solution to locate sources and
targets. For simplicity, localization formulation based on the
maximum likelihood (ML) approach considers that the source and
noise samples are uncorrelated and represented by a Gaussian
distribution. However, the acoustic background noise can severely
affect the accuracy of the location estimation. This paper proposes
an accurate error estimate in which the correlation of the received
signals at each wireless sensor is represented by a Hurst exponent
and modeled by a fractional Gaussian noise (fGn). The experi-
mental results show that the proposed solution is more appropriate
for the source localization estimation under real acoustic noises
and even for highly non-stationary sources.
Index Terms—Acoustic source localization, maximum likeli-

hood (ML), energy based localization, Hurst exponent, fractional
Gaussian noise.

I. INTRODUCTION

T HE deployment of efficient and low cost wireless sensor
networks [1]–[3] has motivated the proposal of source lo-

calization solutions based on acoustic energy sensing [1], [4].
The accurate estimation of an acoustic source position is a very
important issue in many research areas and applications such as
target tracking, surveillance, video conferences [5], seismic [6]
and robotics [7].
The acoustic source localization methods are mainly based

on the computation of the time-delay estimation (TDE) or the
time-delay of arrival (TDOA) and the acoustic signal energy.
The TDE or TDOA algorithms use the time-delay or phase dif-
ference measures obtained at the acoustic sensors generally dis-
tributed in a microphone array. Source localization estimation
methods using the acoustic energy or intensity were proposed
for wireless sensors and enable direct source location. The max-
imum likelihood (ML-Energy) version [4] gives the location es-
timation of multiple sources even in open-field wireless sensor
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environment. The authors showed that the ML-Energy outper-
forms the previous acoustic estimation algorithms.
The major challenge of the source localization estimation

area is to achieve accurate measures at each sensor in the pres-
ence of real acoustic background noise. For simplicity, in the
literature, the location estimation models consider that the noise
samples are uncorrelated and represented by a Gaussian dis-
tribution. However, this assumption can severely degrade the
sensor measurements and thus, the source localization estima-
tion accuracy [8]. Moreover, the acoustic noises and sources
can be non-stationary and have different time and frequency
statistics [9]–[11].
This paper introduces a novel ML acoustic energy based

source localization definition to achieve the estimation ac-
curacy under correlated acoustic noise distortion. In the
proposed solution, the correlation degree of the corrupted
signals received at each acoustic sensor is represented by the
Hurst exponent [12]. These samples are represented by
a fractional Gaussian noise (fGn) [13]. Furthermore, since

defines any degree of correlation, the proposed method
(H-ML-Energy) provides a more robust localization estimation
under a wide range of acoustic scenarios. The H-ML-Energy
is investigated considering three real acoustic sources (Car,
Helicopter and Speech) and three noises (Babble, Car and F16)
collected from different databases. The evaluation experiments
are conducted with the signals corrupted by the real acoustic
noises and five different values of SNR (signal-to-noise ratio).
The experiments also include the computation of the index of
non-stationarity (INS) [14] of the acoustic sources and noises.
The ML-Energy [4] is adopted as the baseline method for the
source localization investigation considering correlated and un-
correlated noisy scenarios. The source localization estimation
accuracy is examined in terms of the error probability function
(EPF), the Bhattacharrya distance [15], [16] and the root mean
square error (RMSE) estimates. The results show that the
H-ML-Energy outperforms the baseline ML-Energy for all the
acoustic sources in correlated noisy situations. For the highly
non-stationary Speech source, the proposed solution achieves
lower RMSE results than those obtained with ML-Energy, even
when it is corrupted by the non-stationary acoustic noises (e.g.,
Babble and F16).
This paper is organized as follows. Section II introduces the

main concepts of the Hurst exponent, its estimation method
and the index of non-stationarity. It also presents the time
and spectral characteristics of the acoustic sources and noises
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examined in this paper. In Section III, the proposed solution,
H-ML-Energy, is introduced. Extensive localization experi-
ments and results considering the proposed solution and the
baseline method, are provided and discussed in Section IV.
Finally, Section V concludes this work.

II. ACOUSTIC SOURCE AND NOISE REPRESENTATION:
TEMPORAL AND SPECTRAL CHARACTERISTICS

Real acoustic signals and noises are generated by many kinds
of sources like animals, vehicles, weapons and people. Conse-
quently, they have different temporal characteristics (amplitude
distribution), stationarity, time-scale or degree of correlation
and spectral aspects. This Section briefly introduces the Hurst
exponent and the estimation method applied in this work. It also
shows the spectrogram of the sources and noises and discusses
its correspondence with the Hurst values. The index of non-sta-
tionarity [14] is also presented and evaluated in this Section.

A. Hurst Exponent
The Hurst exponent expresses the time-scaling

degree of a stochastic process. It can also be defined by the
decaying rate of the auto-correlation coefficient function

as . Let a signal be represented by
a stochastic process , with finite variance and normalized
auto-correlation function (ACF)

(1)

where and refer to the covariance and variance,
respectively, belongs to and .
The asymptotic behavior of is given by

(2)

This means that is a slowly decaying function and that
when and hence,

. According to the value of ,
stochastic processes can be classified as:
• Anti-persistent processes or negative correlation degree

: The ACF rapidly tends to zero and
.

• Processes with short-range time scale : The
ACF exhibits an exponential decay to zero, such that

, where is a finite constant, e.g.,
uncorrelated Gaussian noise.

• Processes with long-range time scale or strong correlation
: The ACF is a slowly-vanishing

function, meaning a time dependence degree even between
samples that are far apart or .

Therefore, the exponent of a signal is related to its spectral
characteristics. Within the whole range , the power spectral
density can be shown to be proportional to when

[13]. For is constant over the whole
frequency spectrum (e.g., white noise), whereas low frequencies
are prominent in the case where , and in particular
when ( or pink noise).
In this work, the Hurst exponent estimation is adopted

to examine the correlation degree of the noisy signals. The
wavelet-based method [17]–[19] is applied for the estimation

TABLE I
HURST EXPONENT ESTIMATION OF THE ACOUSTIC

SOURCES CORRUPTED WITH REAL NOISES

of the Hurst exponent. It can be described in three main steps
as follows:
1) Wavelet decomposition: the discrete wavelet transform

(DWT) is applied to successively decompose the input
sequence of samples into approximation and
detail coefficients, where is the decomposition
scale and is the coefficient index of
each scale.

2) Variance estimation: for each scale , the variance
is evaluated from the detail coeffi-

cients, where is the number of available coefficients for
each scale . In [18], it is shown that ,
where is a constant.

3) Hurst computation: a weighted linear regression is used to
obtain the slope of the plot of versus .
The Hurst exponent is estimated as .

Table I shows the values obtained from each acoustic
source (Car, Helicopter and Speech), noise (Babble, Car, F16)
and also from the corrupted signals considering five SNR
values: 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. It can be noted
that the sources and noises achieved a wide range of values

. It means that all types of correlations
are represented, i.e., strong and anti-persistent or
negative . It can also be observed that the correlation
degree of a source significantly varies depending on the back-
ground noise. This is evident with the Speech source corrupted
with F16. When the Helicopter source , which has
an anti-persistent correlation, is corrupted with a strong corre-
lated noise as the Car , the resulting noisy signal
shows a long-range correlation at dB.
Additionally, the corresponding spectral characteristic of the
acoustic sources and noises can be examined in Fig. 1.

B. Index of Non-Stationarity
In its definition, a signal is considered as stationary rela-

tively to an observation scale if its local short-time spectra at
all different time instants, are statistically similar to its global
spectrum. The index of non-stationarity (INS) [14]is a time-fre-
quency approach to objectively examine the non-stationarity of
a signal. The stationarity test is conducted by comparing the
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Fig. 1. Spectrogram of signals and noises. (a) Car, (b) Helicopter, (c) Speech, (d) F16, (e) Babble.

Fig. 2. INS values of source signals and noises. The red line represents the INS value of each time scale . The threshold is indicated by the green dashed
line. (a) Car, (b) Helicopter, (c) Speech, (d) F16, (e) Babble.

spectral components of the signal to a set of stationary refer-
ences, called surrogates. For this purpose, the spectrograms of
the signal and surrogates are obtained by means of the short-
time Fourier transform (STFT) considering a window length
. Then, the Kullback-Leibler (KL) divergence is used to mea-

sure the distance between the short-time spectra of the ana-
lyzed signal and its global spectrum averaged over time. Fi-
nally, the INS is given by the ratio between this distance and
the corresponding KL values obtained from the stationary sur-
rogates. In [14], the authors considered that the distribution of
the KL values can be approximated by a Gamma distribution
[14]. Therefore, for each window length , a threshold can
be defined for the stationarity test considering a confidence de-
gree of 95%. Thus,

(3)

In this work, the index of non-stationarity is evaluated for
the investigated acoustic sources and noises. If the signal or the
noise is stationary, its INS value is expected to be close to unity.
On the other hand, the larger the INS the more non-stationary
the noise. The time scale indicates the relation between
the length adopted in the short-time spectral analysis and
the total length ( s) of the signal.
The stationarity of three acoustic sources (Car, Helicopter and

Speech) and three noises (Babble, Car and F16) was examined
in this work. The female speech source was chosen from TIMIT
[20] database. The F16 and Babble noises and Car source/noise

were selected from NOISEX-92 [21]database. The Helicopter
source was chosen from FreeSfx1 database. The INS values are
presented in Fig. 2. Theminimum time scale value chosen
for the estimation is 0.016.
In this paper, the signals and noises that have INS values

greater than 40 are considered highly non-stationarity. It can be
seen that the Speech and Helicopter sources are highly non-sta-
tionary. If its INS value is above the threshold for themajority of

, the noise or source is classified as non-stationary. This is
the case of the Babble and F16 noises. The Car noise is consid-
ered as stationary since its INS values are below the threshold
for every time scale.

III. PROPOSED H-ML-ENERGY
The main objective or aim of the proposed approach is to

improve the accuracy of the maximum likelihood energy-based
acoustic source localization methods, when the sources are cor-
rupted with real acoustic noises. The ML-Energy was first pro-
posed in [1] and it was extended for multiples sources in [4].
Its main principle is based on the fact that the acoustic energy
is attenuated as the signal propagates from the source to the
sensors [22].
Consider an open-field without obstacles (no reverberation)

and with a constant and uniform sound velocity where
sources are positioned in this field, and energy sensors are
deployed with known positions given by .
The signal intensity attenuates in a rate inversely proportional

1Available in http://www.freesfx.co.uk/.
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to the distance that it is propagated [22]. The signal received at
the -th sensor is sampled during the -th time interval with a
sampling frequency . It is defined as

(4)

where

(5)

is the acoustic signal intensity measured in the -th sensor. The
vector denotes the -th source spatial
coordinates and is the background noise. The -th source
signal intensity is represented by , with being the
propagation delay from the -th source to the -th sensor .
indicates the -th sensor gain.
Given a time index , the acoustic energy is defined [1]

as , or

(6)

Since the energy measurements are averaged over a short-
time block of samples, and considering that the signal en-
ergy does not vary significantly during the block duration, the
propagation delays are neglected for the model. Therefore, the
acoustic energy received in each sensor is

(7)

where denotes the -th
source acoustic energy, and refers to
the Euclidean distance between the -th sensor and the -th
source. The ML-Energy method considers that the cross term

is equal to zero, since the background noise
is modeled as uncorrelated with the source signal. In this
proposal, the cross term and the term
are modeled by a fractional Gaussian noise with exponent,
mean and variance , obtained from the sensor readings,
i.e., from the received noisy signal. Denoting the fGn process
by , the acoustic source
localization model is given by,

(8)

Thus, the fGn process represents the energy measurement error
and, since the fGn is able to represent any degree of correlation
by the means of its exponent, the proposed solution grants
better accuracy to the energy based localization model.
The fractional Gaussian noise (fGn) [13] is a series of iden-

tical Gaussian random variables , with correla-
tion degree represented by , and with the property

(9)

Fig. 3. Hurst exponent estimated from the sources corrupted with real noise
(green) and from fGn process proposed for the representation of the correlation
degree (blue). The dashed red lines indicate the value . (a) Car F16
(0 dB), (b) Car F16 (10 dB), (c) Helicopter F16 (0 dB), (d) Helicopter F16
(10 dB), (e) Speech Babble (0 dB), (f) Speech Babble (10 dB).

where denotes similarity in the probability distribution. Al-
ternatively, it can be given in terms of its sample variance, i.e.,

where

(10)

The fGn autocorrelation function can be defined by

(11)

where is the lag and is the Hurst exponent. According to
[13], the fGn spectral density can be approximated, for all
values, by , when . It follows
that corresponds to the particular case of the ML-En-
ergy, i.e.,

(12)

Fig. 3 depicts the Hurst exponent results estimated from
blocks of the source signals corrupted by the real acoustic
noises at 0 dB and 10 dB. The values of the signals are
plotted using a dashed green line whereas the solid blue line
represents the values of the sources corrupted by fGn with

estimated from the real acoustic noises. The uncorrelated
case is illustrated by the dashed red line over . It can
be seen that the three sources are highly different from the
uncorrelated Gaussian assumption in almost all the blocks, i.e.,
their value is not equal to 1/2. This demonstrates that the
fGn is a good candidate to represent the correlation degree of
the received signals, since their values obtained from each
block is followed the values of the fGn.
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A. H-ML-Energy Localization Estimation
In the proposed acoustic source localization with the corre-

lation degree represented by , (8) must be redefined to com-
pute the maximum likelihood estimation function to achieve the
source localization considering the sensor readings. Thus,

(13)

where is the normalized acoustic energy evaluated for
each sensor , and (8) can be rewritten as

, with

...
...

. . .
...

(14)

where is the gain matrix, represents the attenuation ma-
trix, is the acoustic energy source vector and denotes the
error vector .
The joint probability density function of in matrix form

is

(15)

where,

(16)

is a vector with the source positions and their corresponding
acoustic energies . Applying the logarithm in (15), it is ob-
tained the log-likelihood function [6],

(17)

and its minimum can be found by a computational low-cost mul-
tiresolution search (MR) [4] or an exhaustive search (ES). In this
work, the MR search is applied in the experiments.
For the H-ML-Energy implementation, the fGn is gener-

ated using the midpoint displacement technique [23] with the
and exponent parameters estimated from the signals

corrupted with the real acoustic noises, received at each sensor.
The Hurst exponent is estimated using the wavelet-based
estimator with the 12 coefficients of a Daubechies digital filter
[17]. For the ML-Energy, the Gaussian noise is generated using
the Box-Muller method [24].

B. Computational Complexity
The computational complexity of the proposed localization

solution can be divided into two main parts: the estimation of
the exponent, and parameters of the H-ML-Energy
has the computational cost of , where is the number of
samples of each block. This is the same cost of the estimation

of mean and variance of the baseline ML-Energy solution. And,
the computational cost of the search for the minimum value of

in (17) depends on the chosen method. Considering grid
points and sources, the extensive search needs to examine

points. However, for the MR search, only points are
evaluated in each of iterations, where . Thus, the
number of search points in the multiresolution search is reduced
from to .

IV. RESULTS AND DISCUSSION

The proposed H-ML-Energy is evaluated by a series of
simulation experiments. All the experiments were performed
using real corrupted or noisy signals. In the H-ML-Energy,
the acoustic energy of the corrupted signals is computed for
each frame using (7). These values and also the and
parameters, are then used to compose the H-ML matrices
(Section III-A) which are finally applied to estimate the source
location. The performance of the proposed method is compared
to the baseline ML-Energy under two different situations:
• In the first situation, the acoustic energy is obtained with
(7), i.e., considering the cross-correlation of the real noisy
signals. In this work, this is defined as the practical baseline
reference since it enables the validation of the ML-Energy
method in real environments.

• In the second situation, the acoustic energy is also calcu-
lated using (7), but the cross-correlation term is ignored

. Since in this second situation it is
considered that the source and the noise are uncorrelated
(which is the ML-Energy assumption) this is defined as the
ideal or ground reference [4].

The acoustic energy values obtained from these two situa-
tions are further applied to obtain the ML matrices [4] used to
estimate the source location.
Three sources (Car, Helicopter and Speech) and three

acoustic noises (Babble, Car, F16) are employed in the Monte
Carlo experiments. The real acoustic sources and noises are
re-sampled to 16 kHz and have 30 seconds time duration. All
these sources and noises are non-stationary, except the Car
(see Section II). The three acoustic noises are used to corrupt
the sources with five different SNR values: 0 dB to 20 dB,
with 5 dB increments, i.e., severe noisy conditions. The SNR
is obtained in a point position that is 1 meter away from the
source position.
Three different measures are applied for the examination of

the source localization accuracy: error probability distribution,
Bhattacharyya distance and RMSE. For the localization tests, a
two dimensional square field of 100 m 100 m is used with its
origin located at the center of the square. Two sensors config-
urations are considered: four and ten sensors that are randomly
positioned in the field. For each localization experiment, a single
acoustic source is randomly positioned in the field and its vari-
able acoustic energy is measured at each sensor. Blocks of

samples, i.e., a total of 473 blocks for each source, are
used in the experiments. Therefore, for each sensor configura-
tion, 21285 tests are conducted in the evaluation experiments.
All the sensors gain are set to . The minimum of the
log-likelihood function of the H-ML-Energy and the ML-En-
ergy are found using the multiresolution search with 1 meter
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Fig. 4. Distribution of the localization error magnitude of the three sources corrupted by the real acoustic noises with dB, using four sensors. Left: ideal
ML-Energy, center: baseline ML-Energy, right: H-ML-Energy. (a) Car Babble, (b) Car F16, (c) Helicopter Car, (d) Helicopter F16, (e) Speech F16,
(f) Speech Babble.

increment. For this purpose, it is adopted iterations with
search points, such that .

A. Error Probability Function
The location error is here defined as the distance between the

target source position and the estimated position. The location
error values are presented in terms of the error probability den-
sity function (EPF) for the three kinds of experiments. The EPF
curves from all sources corrupted by the real acoustic noises
with dB and the four sensors configuration are sum-
marized in the Fig. 4. The histograms are plotted with a 5 m
bin. They also include the mean and the standard deviation of
the localization errors. Each group of three histograms repre-
sents a source corrupted by a certain noise. From the left to the
right, the histogram corresponds to the results obtained with the
ideal reference ML-Energy, the practical baseline ML-Energy
and the H-ML-Energy, respectively.
It can be noted that the localization errors obtained with the

methods are significantly different in distribution. Fig. 4 also
shows that the H-ML-Energy outperforms the practical baseline
ML-Energy. For example, considering the Car source corrupted
with the Babble noise, the mean localization error is 22.10 m
with ML-Energy. On the other hand, the H-ML-Energy method
achieves a location error mean of 15.28 m, i.e., much lower
than the practical reference. As expected, in the situation where
the cross-correlation is ignored, the ideal ML-Energy obtains a
mean location error of 4.40 m.
In the case where the Speech source is corrupted with the

Babble noise, the mean and the standard deviation of the
location error obtained by the proposed method are 19.76 m
and 17.30 m, respectively. These are lower than the local-
ization error found with the ML-Energy ( m,

m), i.e., H-ML-Energy outper-
forms the practical baseline method. In the same scenario, the
ideal reference achieves 9.02 m and 10.03 m, as the mean and

the standard deviation localization errors, respectively. This can
be considered as an unrealistic localization result particularly
for the severe noisy condition ( dB).

B. Bhattacharyya Distance

The second evaluation measure adopted in this work is the
Bhattacharyya distance [15], [16]. The Bhattacharyya dis-
tance is a real number and it is equal to zero
when two testing sample sequences have similar distributions.
The distance is here applied to measure the distance be-
tween the error location distribution of each localization method
(H-ML-Energy and the ideal ML-Energy) and the error location
distribution of the practical baseline ML-Energy. Figs. 5 and
6 show the Bhattacharyya distance results obtained considering
the four and ten sensors configurations, respectively. The blue
line indicates the distance between theH-ML-Energy and the lo-
calization with the practical baseline. The red line shows the dis-
tance measured from the ideal ML-Energy results. It can be ob-
served that for all sources and noises, the H-ML-Energy method
achieves the lowest Bhattacharyya distance values, i.e., the lo-
calization errors are closer to the ones obtained with the prac-
tical ML-Energy method. Considering the four sensors config-
uration, it can be seen that the Car source corrupted with the
Babble noise presents values of 0.62 with the ideal ML-En-
ergy, and dB, while the proposed solution obtains

. For dB, the difference between both
methods is reduced, but it is still significant, i.e., 0.11 and 0.37
for the H-ML-Energy and the ML-Energy, respectively. For the
highly non-stationary Speech source corrupted with the Babble
noise with dB, the values are 0.03 and 0.10 for
the H-ML-Energy and the ML-Energy, respectively. These re-
sults demonstrate that the H-ML-Energy outperforms the base-
line ML-Energy even for a highly non-stationary source and a
low value of SNR.
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Fig. 5. Bhattacharrya distance from location error results obtained from the
ML-Energy (red lines) and the H-ML-Energy (blue), using 4 sensors config-
uration and block size of 1024 samples. (a) Car F16, (b) Car Babble,
(c) Helicopter Car, (d) Helicopter F16, (e) Helicopter Babble, (f) Speech
Car, (g) Speech F16, (h) Speech Babble.

Fig. 6. Bhattacharrya distance from location error results obtained from
the ML-Energy (red lines) and the H-ML-Energy (blue), using 10 sensors
configuration and block size of 1024 samples. (a) Car F16, (b) Car
Babble, (c) Helicopter Car, (d) Helicopter F16, (e) Helicopter Babble,
(f) Speech Car, (g) Speech F16, (h) Speech Babble.

For the experiments using the ten sensors configuration
(Fig. 6), it can be observed that the Car source corrupted
with the F16 noise ( dB), presents for
the H-ML-Energy and for the ideal ML-Energy.
When the Babble noise corrupts the Helicopter source, with

dB, the proposed solution obtains while
the Bhattacharyya distance with the ML-Energy is 0.21. Note
that, for this case, the acoustic signal samples received at the
sensors are uncorrelated , as shown in Table I.
However, since both the Helicopter source and the Babble

noise are non-stationary (refer to Fig. 2), all the parameters of
the corrupted signal are expected to vary in different short-time
blocks. The exponent estimated from each block enables the
detection of the acoustic energy variability.
In summary, the proposed solution obtains lower Bhat-

tacharyya distance results mainly for the low SNR values, when
the background noise effects are more evident.

C. Root Mean Squared Error
The root mean squared error (RMSE) is also applied as a third

evaluation measure in the experiments. It is defined as,

(18)

where denotes the target source location during -th
block and represents its estimated position

during the same block. Here, the purpose of RMSE is to verify
how close the estimated localization obtained with the methods
are from the target source positions. Figs. 7 and 8 illustrate the
RMSE computed for all the SNR values obtained with the four
and ten sensors configurations, respectively. The H-ML-En-
ergy RMSE values are represented by the blue line. The green
dashed line corresponds to the RMSE from the practical base-
line method. The red lines illustrate the RMSE obtained with
the ideal ML-Energy. It can be noted from Fig. 7 that for the
Car source corrupted with the Babble noise ( dB),
the H-ML-Energy RMSE (24.31 m) is lower than the practical
baseline value (27.66 m). Once again, this demonstrates that
the proposed method outperforms the baseline ML-Energy
under noisy condition. On the other hand, the RMSE obtained
with the ideal ML-Energy differs in more than 15 m from the
practical baseline. For this case, increasing the SNR value to
10 dB, the H-ML-Energy obtains a RMSE value of 13.02 m,
while the practical ML-Energy finds a RMSE value of 15.32
m. Interesting results can be observed when the Car source
is corrupted with the F16 noise, for dB. For such
cases, the proposed method still outperforms the practical
baseline ML-Energy, but the difference between their RMSE
values is reduced to less than 1 meter. For the Speech source
corrupted with the Babble noise the practical baseline reference
presents RMSE equal to 28.19 m, i.e., about 5 meters above the
RMSE value obtained with the H-ML-Energy, which is 23.96
m. On the other hand, the ideal ML-Energy method shows a
RMSE value of 15.89 m, which differs in almost 13 meters
from the practical baseline.
From Fig. 8, it can be seen that for the Helicopter source cor-

rupted with the Babble noise with dB, the proposed
solution obtains a RMSE of 34.72 m, while the practical base-
line ML-Energy achieves the RMSE of 40.85 m. In the ideal
ML-Energy situation, the obtained RMSE is 17.68 m, which is
very distant from the H-ML-Energy and from the practical base-
line ML-Energy results. It is important to observe that for some
cases, for example, the Helicopter source corrupted with the
Car noise, the RMSE obtained with the H-ML-Energy is very
close to the ones achieved with the practical baseline ML-En-
ergy (less than 1 meter for the 0 dB case), contrasting with the
ideal ML-Energy.
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Fig. 7. RMSE obtained with the practical baseline ML-Energy (green lines)
and H-ML-Energy (blue), using 4 sensors configuration. Ideal baseline ML-En-
ergy values are plotted using red lines. (a) Car F16, (b) Car Babble,
(c) Helicopter Car, (d) Helicopter F16, (e) Helicopter Babble,
(f) Speech Car, (g) Speech F16, (h) Speech Babble.

Fig. 8. RMSE obtained with the practical baseline ML-Energy (green lines)
and H-ML-Energy (blue), using 10 sensors configuration. Ideal baseline
ML-Energy values are plotted using red lines. (a) Car F16, (b) Car Babble,
(c) Helicopter Car, (d) Helicopter F16, (e) Helicopter Babble,
(f) Speech Car, (g) Speech F16, (h) Speech Babble.

Although the ideal ML-Energy shows smaller RMSE values
when compared to the practical baseline and the proposed
method, this can be considered as an unrealistic or inaccurate
indication. Moreover, it can be seen that despite the different
source and noise statistics (refer to Figs. 1 and 2), the ideal
localization method achieves almost similar RMSE results
for the severe SNR values ( dB). This is expected since
the ideal ML-Energy ignores the cross-correlation term in its
formulation. However, for dB, i.e., the noise effect
is smoothed, the results become much closer to the practical
reference and the proposed method.

V. CONCLUSION
This paper has introduced a novel representation of the

acoustic samples cross-correlation for the source localiza-
tion estimation in real acoustic noise environments. In the
H-ML-Energy proposal, the error of the energy readings due to
the noise correlation is represented by the Hurst exponent of a
fractional Gaussian noise. Several experiments with different
real acoustic sources and noises, SNR values and non-station-
arity characteristics were conducted to examine the proposed
solution. The accuracy of the proposed method was compared
to the practical baseline ML-Energy. The results demonstrated
that the proposed approach consistently outperforms the base-
line ML-Energy when considering real noisy environments.
The investigation of signal enhancement techniques [25],

[26] to improve the source localization estimation is worthy for
future research.

REFERENCES
[1] D. Li and Y. Hu, “Energy based collaborative source localization using

acoustic micro-sensor array,” EURASIP Appl. Signal Process., vol. 4,
pp. 321–337, 2003.

[2] D. Blatt and A. Hero, “Energy-based sensor network source localiza-
tion via projection onto convex sets,” IEEE Trans. Signal Process., vol.
54, no. 9, pp. 3614–3619, Sep. 2006.

[3] S. Mini, S. Udgata, and L. Sabat, “Sensor deployment and scheduling
for target coverage problem in wireless sensor networks,” IEEE Sens.
J., vol. 14, no. 3, pp. 636–643, 2014.

[4] X. Sheng and Y. Hu, “Maximum likelihood multiple-source local-
ization using acoustic energy measurements with wireless sensor
networks,” IEEE Trans. Signal Process., vol. 53, no. 1, pp. 44–53,
Jan. 2005.

[5] H. Wang and P. Chu, “Voice source localization for automatic camera
pointing system in videoconferencing,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP'97), Munich, Germany,
1997, vol. 1, no. 1, pp. 187–190.

[6] P. Chung and J. Boehme, “The methodology of the maximum like-
lihood approach—Estimation, detection, and exploration of seismic
events,” IEEE Signal Process. Mag., vol. 29, no. 3, pp. 40–46, May
2012.

[7] J. Valin, F. Michaud, J. Rouat, and D. Letourneau, “Robust sound
source localization using a microphone array on a mobile robot,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS'03), 2003, vol.
2, pp. 1228–1233.

[8] V. Trifa, A. Koene, J. Moren, and G. Cheng, “Real-time acoustic
source localization in noisy environments for human-robot multimodal
interaction,” in Proc. 16th IEEE Int. Symp. Robot Human Interact.
Commun., 2007, pp. 393–398.

[9] R. Webster, “Ambient noise statistics,” IEEE Trans. Signal Process.,
vol. 41, no. 6, pp. 2249–2253, Jun. 1993.

[10] J. Ming, T. Hazen, J. Glass, and D. Reynolds, “Robust speaker recogni-
tion in noisy conditions,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 15, no. 5, pp. 1711–1723, Jul. 2007.

[11] L. Zão and R. Coelho, “Generation of coloured acoustic noise samples
with non-gaussian distribution,” IET Signal Process., vol. 6, no. 7, pp.
684–688, 2012.

[12] H. Hurst, “Long term storage capacity of reservoirs,” Trans. Amer. Soc.
Civil Eng., vol. 116, pp. 770–799, 1951.



DRANKA AND COELHO: ROBUST ML ACOUSTIC ENERGY BASED SOURCE LOCALIZATION 267

[13] B. Mandelbrot and J. Ness, “Fractional Brownian motions, fractional
noises and applications,” SIAM Rev., vol. 10, no. 4, 1968.

[14] P. Borgnat, P. Flandrin, P. Honeine, C. Richard, and J. Xiao, “Testing
stationarity with surrogates: A time-frequency approach,” IEEE Trans.
Signal Process., vol. 58, no. 7, pp. 3459–3470, Jul. 2010.

[15] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by probability distributions,” Bull. Calcutta Math.
Soc., vol. 35, pp. 99–109, 1943.

[16] T. Kailath, “The divergence and Bhattacharyya distance measures in
signal selection,” IEEE Trans. Commun. Technol., vol. 15, no. 1, pp.
52–60, Feb. 1967.

[17] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA, USA:
SIAM, 1992.

[18] D. Veitch and P. Abry, “Wavelet analysis of long-range-dependent
traffic,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 2–15, Jan. 1998.

[19] R. Sant'Ana, R. Coelho, and A. Alcaim, “Text-independent speaker
recognition based on the Hurst parameter and the multidimensional
fractional Brownian motion model,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 14, no. 3, pp. 931–940, May 2006.

[20] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren,
andV. Zue, “TIMIT acoustic-phonetic continuous speech corpus,”Lin-
guist. Data Consortium, 1993.

[21] A. Varga and H. Steeneken, “Assessment for automatic speech recogni-
tion II: NOISEX-92: A database and an experiment to study the effect
of additive noise on speech recognition systems,” Speech Commun.,
vol. 12, no. 3, pp. 247–251, 1993.

[22] L. Kinsler, Fundamentals of Acoustics. New York, NY, USA: Wiley,
1982.

[23] M. Barnsley, R. Devaney, B. Mandelbrot, H. Peitgen, D. Saupe, and R.
Voss, The Science of Fractal Images. New York, NY, USA: Springer-
Verlag, 1988.

[24] G. Box and M. Muller, “A note on the generation of random normal
deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610–611, 1958.

[25] L. Zão, R. Coelho, and P. Flandrin, “Speech enhancement with emd and
hurst-based mode selection,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 22, no. 5, pp. 897–909, May 2014.

[26] T. Gerkmann and R. Hendriks, “Unbiased MMSE-based noise power
estimation with low complexity and low tracking delay,” IEEE Trans.
Audio, Speech, Lang.Process., vol. 20, no. 4, pp. 1383–1393,May2012.

Eloi Dranka Junior obtained the M.Sc. degree
from the Military Institute of Engineering (IME) of
Rio de Janeiro in 2014. From the same Institute, he
received the B.Sc. degree in electrical engineering
in 2009. His current research mainly focuses on
acoustic signal processing, detection and estimation
of non-stationary signals and signal processing for
source localization in wireless sensor networks.

Rosângela Fernandes Coelho received the Ph.D.
degree from the Ecole Nationale Supérieure des
Télécommunications (ENST-Télécom ParisTech)
in 1995 and the M.Sc. degree from the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio) in
1991, both in electrical engineering.
She joined the Military Institute of Engineering

(IME) of Rio de Janeiro, in 2002, where she is
Associate Professor at the Electrical Engineering
Department. Prof. Coelho founded and heads the
Laboratory of Acoustic Signal Processing (LASP).

In 2003, she received the University Research Program grant award from
CISCO/USA. She also served as editorial board member of the IEEE Com-
munications Surveys and Tutorials from 1999–2007. Since 2008, she is
responsible for the International Scientific Collaboration IME-ParisTech that
includes 10 french engineering schools. Prof. Coelho was President-Adjoint
of the Brazilian Telecommunications Society from 2008–2010 and she is
member of the IEEE Signal Processing Society. In 2011, Prof. Coelho received
the USPTO patent of an automatic speaker recognition method based on a
new speech feature and speaker classifier. Her main research interests include
acoustic signal processing, speech enhancement and intelligibility, speech and
speaker recognition, nonlinear and non-stationary signal analysis, acoustic
emotion detection and classification, acoustic speech features, and statistical
signal processing.


