

Empirical Signal Decomposition for Acoustic Noise Detection

L. Zão and R. Coelho

Laboratory of Acoustic Signal Processing (LASP) Military Institute of Engineering (IME), Rio de Janeiro, Brazil coelho@ime.eb.br lasp.ime.eb.br

Laboratory of Acoustic Signal Processing

Acoustic Noise Detection

Abstract

This work introduces an adaptive noise detection method for non-stationary acoustic noisy signals. The proposed approach is based on the empirical mode decomposition (EMD) and a vector of Hurst exponent coefficients. The EMD is a powerful tool for multiresolution analysis of nonlinear and nonstationary signals in the time domain. The proposed noise detection is evaluated considering real noisy signals with different non-stationarity degrees. The results demonstrate that the EMD-based detector enables a better separation between the clean and noisy signals when compared to two competitive methods.

Empirical Mode Decomposition

EMD method: The method decomposes a signal into a series of oscillatory intrinsic mode functions (IMF) and a residual component. The general idea is to locally analyze a signal x(t) between two consecutive extrema (minina or maxima). The fast oscillations are defined as the detail components, $d_k(t)$, while the reamining slow fluctuations compose the residual or local trend, $a_k(t)$.

The first detail function, $d_1(t)$, is obtained from all the consecutive extrema of x(t), such that

Fig. 1: Separation of two signals with different

time-frequency components.

Detection of the Noise Components:

The Hurst exponent ($0 \le H \le 1$) is a timefrequency coefficient and it is related to the power spectral characteristics of a signal x(t). The power spectral density $S_{\chi}(f) \propto f^{1-2H}$ when $f \to 0$.

H < 1/2: $S_{\chi}(f)$ is mostly concentrated at the high frequencies;

H = 1/2: $S_x(f)$ is approximately constant over the entire spectrum (e.g., white noise); H > 1/2: low frequencies are prominent, in particular when $H \rightarrow 1$ (1/f or pink noise).

Fig. 5: Values of H estimated from IMFs obtained from the speech signal corrupted with acoustic noises with signal-to-noise ratio of 5 dB: (a) car traffic (MNS) and (b) jackhammer (NS). Dashed lines refer to the clean speech.

$x(t) = d_1(t) + a_1(t),$

where $a_1(t)$ denotes the first residual. In general, the separation between the fast and slow fluctuations is repeated over the residual of order k-1 to obtain the detail and trend of order k, i.e.,

 $a_{k-1}(t) = d_k(t) + a_k(t).$

Time-Frequency Analysis

- Fourier: the classic theory is not suitable for nonstationary signals.
- Wavelets: this time-frequency method requires a set of pre-defined basis functions for the decomposition modes.
- **EMD** main features:
- ✓ Adaptativity: decomposition is fully data-driven.
- ✓ Locality: IMFs are completely based on the local properties of the input data.
- \checkmark Completeness: If $IMF_k(t)$ denotes the k-th mode and r(t) is the last residual, EMD assures that

$$z(t) = \sum_{k=1}^{K} IMF_k(t) + r(t)$$

EMD Algorithm

EMD algorithm can be described as follows:

- 1. Set k = 1 and initialize the variable $a_0(t) = x(t)$;
- 2. Identify all local minima and maxima of $a_{k-1}(t)$;
- 3. Obtain the upper ($e_{max}(t)$) and lower ($e_{min}(t)$) envelopes by cubic splines interpolation of the local maxima and minima, respectively;
- 4. Compute the local trend $a_k(t) = (e_{max}(t) + e_{min}(t))/2$;

Detail function: it will be considered as an IMF when its mean is close to zero $(< 10^{-6})$, and all its maxima and minima are positive and negative, respectively.

Sifting: while a detail function $d_k(t)$ is not considered as an IMF, steps 2-5 are repeated with $d_k(t)$ in place of $a_{k-1}(t)$.

Stopping criteria: the algorithm stops

when the last residual, $a_k(t)$, has less

than three extrema.

Signal Reconstruction: The noise components are assumed to be mostly concentrated at the IMFs with $H \cong 1$ (low-frequency). After the decomposition of the noisy signal, each IMF is divided into short-time frames. For each frame, the Hurst exponent defines an index L such that the target signal is reconstructed using only the first L - 1 modes: $\hat{x}(t) = \sum_{k=1}^{L-1} IMF_k(t)$.

Experiments and Results

Acoustic Noise Detection: Competitive Criteria

1. Variance: identifies the first IMF with index L ($L \ge 4$) where the variance is greater than the adjacent modes, i.e.,

 $\operatorname{Var}[IMF_{L}(t)] > \operatorname{Var}[IMF_{L-1}(t)] \text{ and } \operatorname{Var}[IMF_{L}(t)] > \operatorname{Var}[IMF_{L+1}(t)].$

2. StdMean: is defined as the ratio of the mean and the standard deviation of an IMF. This criterion identifies L as the first index for which StdMean is greater than the root mean square of the standardized mean of the first four modes.

Fig. 6: Average values of (a) Hurst, (b) Variance, and (c) StdMean adopted for acoustic noise detection.

Reconstructed Signal Quality (SNR and SegSNR)

Target Signal Reconstruction: the Hanning window is used to avoid discontinuities after the concatenation of the reconstructed frames. The reconstructed signals are evaluated in terms of signalto-noise ratio (SNR) and segmental SNR (SegSNR).

- 5. Calculate $d_k(t) = a_{k-1}(t) a_k(t)$ as the new detail;
- 6. Set k = k + 1 and iterate steps 2-5 on the new residual local trend $a_k(t)$.

corrupted with (b) white noise and (c) car traffic noise.

Dyadic filterbank structure:

When applied over fractional Gaussian noise (fGn) processes, EMD behaves like a dyadic filterbank with overlapping band-pass filters.

Tab. 1: SNR (dB) of the reconstructed signals.

Noise	SNR	speech signal			babble signal		
		Hurst	Variance	StdMean	Hurst	Variance	StdMean
car traffic (MNS)	-5	6.7	-4.2	-4.0	2.5	-4.9	-4.0
	0	9.9	2.2	1.4	3.7	0.6	1.1
	5	12.9	7.5	<mark>6.7</mark>	5.3	4.4	4.6
jackhammer (NS)	-5	3.8	-0.4	-1.5	1.6	-2.3	-3.1
	0	7.6	5.6	3.2	4.3	2.4	1.5
	5	11.7	9.7	7.8	6.7	5.1	5.4
chainsaw (HNS)	-5	-3.4	-4.7	-4.7	-4.3	-4.9	-4.8
	0	0.8	0.4	0.3	0.0	-0.4	-0.3
	5	5.3	5.2	5.2	4.9	3.7	3.8

Tab. 2: SegSNR gain (dB) of the reconstructed signals.

Noise		speech signal			babble signal		
Noise	SINK	Hurst	Variance	StdMean	Hurst	Variance	StdMean
car traffic (MNS)	-5	5.2	1.2	0.9	4.8	0.3	0.9
	0	4.1	1.8	1.1	2.2	0.5	0.7
	5	2.4	1.4	1.0	0.0	-0.5	-0.4
jackhammer (NS)	-5	4.6	3.6	2.4	4.7	3.1	2.3
	0	3.4	3.3	1.8	3.0	2.1	1.4
	5	2.2	1.9	1.1	0.9	0.1	0.2
chainsaw (HNS)	-5	0.7	0.3	0.2	0.2	0.0	0.0
	0	0.3	0.2	0.2	0.0	-0.6	-0.3
	5	0.1	0.1	0.1	0.2	-1.1	-0.8

EMD: Trends and Challenges

The EMD enables the analysis of numerous natural and artificial:

biomedical enginee	ring	image processing	seismic
peech processing	pattern rec	ognition	financial market

Challenges:

- Mode Mixing Problem.
 - \checkmark Ensemble EMD (EEMD);
 - Complete EEMD with Adaptive Noise (CEEMDAN);
 - ✓ Multivariate EMD (MEMD).

Envelope Computation.

- ✓ Optimization-based Mode Decomposition (OMD);
- Sequential Variational Modal Decomposition (Seq-VMD).

Conclusion

This work presented a time-domain noise detection scheme for signals corrupted by non-stationary acoustic noise. The proposal is derived from a two steps procedure composed by the empirical mode decomposition and a Hurst exponent vector. A SNR gain of 1.6 dB is obtained for the highly nonstationary chainsaw noise source. Moreover, it can be very promising for speech enhancement solutions.

Non-Stationarity

The index of non-stationarity (INS) is a time-frequency approach to objectively examine the nonstationarity of a target signal. For each window length T_h a threshold γ is defined for the stationarity test, such that:

INS $\begin{cases} \leq \gamma : \text{ signal is stationary;} \\ > \gamma : \text{ signal is non-stationary.} \end{cases}$

INS of Acoustic Signals and Noises: Speech signal and chainsaw noise are highly non-stationary (HNS; $INS_{max} > 80$; jackhammer noise is non-stationary (NS; $40 < INS_{max} < 50$); babble signal and car traffic noise are moderately non-stationary (MNS; $INS_{max} < 20$).

Fig. 4: Spectrogram and index of non-stationarity of acoustic signals: (a) speech, (b) babble, and noises: (c) car traffic, (d) chainsaw, and (e) jackhammer. Dashed lines indicate the values of γ .

References: Highlights

N. Huang, et al, "The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis", Proceedings of the Royal Society, vol. 454, no. 1971, pp. 903-995, 1998.

P. Flandrin, G. Rilling and P. Gonçalvès, "Empirical Mode Decomposition as a Filter Bank", IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112-114, 2004.

P. Borgnat, P. Flandrin, P. Honeine, C. Richard and J. Xiao, "Testing Stationarity With Surrogates: A Time-Frequency Approach," IEEE Transactions on Signal Processing, vol.58, no.7, pp. 3459-3470, July 2010.

P. Flandrin, P. Gonçalvès and G. Rilling, "Detrending and Denoising with Empirical Mode Decomposition", Proc. of the Eur. Sig. Proc. Conf. (EUSIPCO 2004), pp. 1581-1584, 2004.

N. Chatlani and J. Soraghan, "EMD-based Filtering (EMDF) of Low-Frequency Noise for Speech Enhancement", IEEE Transactions on Audio, Speech and Language Processing, vol. 20, no. 4, pp. 1158-1166, May 2012.

L. Zão, R. Coelho and P. Flandrin, "Speech Enhancement with EMD and Hurst-Based Mode Selection," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 5, pp. 899-911, May 2014.

R. Coelho and L. Zão, "Empirical mode decomposition theory applied to speech enhancement", in Signals and Images: Advances and Results in Speech, Estimation, Compression, Recognition, Filtering, and Processing, eds. R. Coelho, V. Nascimento, R. Queiroz, J. Romano and C. Cavalcante, CRC Press, 2015.

R. Sant Ana, R. Coelho and A. Alcaim, "Text-Independent Speaker Recognition Based on the Hurst Parameter and the Multi-Dimensional Fractional Brownian Motion Model", IEEE Transactions on Audio, Speech and Language Processing, vol. 14, no. 3, pp. 931-940, May 2006.