
Abstract 

This work introduces an adaptive noise detection method for non-stationary acoustic noisy signals. The 
proposed approach is based on the empirical mode decomposition (EMD) and a vector of Hurst 
exponent coefficients. The EMD is a powerful tool for multiresolution analysis of nonlinear and non-
stationary signals in the time domain. The proposed noise detection is evaluated considering real noisy 
signals with different non-stationarity degrees. The results demonstrate that the EMD-based detector 
enables a better separation between the clean and noisy signals when compared to two competitive 
methods. 

Empirical Mode Decomposition 

EMD method: The method decomposes a signal into a series of oscillatory intrinsic mode functions 
(IMF) and a residual component. The general idea is to locally analyze a signal 𝑥(𝑡) between two 
consecutive extrema (minina or maxima). The fast oscillations are defined as the detail components, 
𝑑𝑘 𝑡 , while the reamining slow fluctuations compose the residual or local trend, 𝑎𝑘 𝑡 .  

EMD Algorithm 

Conclusion 
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 Detection of the Noise Components:  
The Hurst exponent ( 0 ≤ 𝐻 ≤ 1 ) is a time-
frequency coefficient and it is related to the power 
spectral characteristics of a signal 𝑥(𝑡). The power 
spectral density 𝑆𝑥(𝑓) ∝ 𝑓1−2𝐻 when 𝑓 → 0.  
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Experiments and Results 

EMD algorithm can be described as follows: 
 

1. Set 𝑘 = 1 and initialize the variable 𝑎0 𝑡 = 𝑥(𝑡); 
2. Identify all local minima and maxima of 𝑎𝑘−1 𝑡 ; 
3. Obtain the upper ( 𝑒𝑚𝑎𝑥 𝑡 ) and lower ( 𝑒𝑚𝑖𝑛 𝑡 ) 

envelopes by cubic splines interpolation of the local 
maxima and minima, respectively; 

4. Compute the local trend 𝑎𝑘 𝑡 = (𝑒𝑚𝑎𝑥 𝑡 + 𝑒𝑚𝑖𝑛 𝑡 )/2; 
5. Calculate 𝑑𝑘 𝑡 =  𝑎𝑘−1 𝑡 − 𝑎𝑘 𝑡  as the new detail; 
6. Set 𝑘 = 𝑘 + 1 and iterate steps 2-5 on the new residual 

local trend 𝑎𝑘 𝑡 . 
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Acoustic Noise Detection 

The first detail function, 𝑑1(𝑡), is obtained from all 
the consecutive extrema of 𝑥(𝑡), such that 

𝑥 𝑡 = 𝑑1 𝑡 + 𝑎1 𝑡 , 

where 𝑎1 𝑡  denotes the first residual. In general, the 
separation between the fast and slow fluctuations is 
repeated over the residual of order 𝑘 − 1 to obtain 
the detail and trend of order 𝑘, i.e., 

𝑎𝑘−1 𝑡 = 𝑑𝑘 𝑡 + 𝑎𝑘 𝑡 . 

 

Time-Frequency Analysis 
• Fourier: the classic theory is not suitable for non-

stationary signals. 

• Wavelets: this time-frequency method requires a 
set of pre-defined basis functions for the decom-
position modes. 

 
 
 
 

Dyadic filterbank structure: 
When applied over fractional Gaussian noise 
(fGn) processes, EMD behaves like a dyadic 
filterbank with overlapping band-pass filters. 

Non-Stationarity 
The index of non-stationarity (INS) is a time-frequency approach to objectively examine the non-
stationarity of a target signal. For each window length 𝑇ℎ a threshold 𝛾 is defined for the stationarity 
test, such that: 

INS     
≤ 𝛾:  signal is stationary;          
> 𝛾:  signal is non−stationary.

 
 

INS of Acoustic Signals and Noises: Speech signal and chainsaw noise are highly non-stationary (HNS; 
INS𝑚𝑎𝑥 > 80); jackhammer noise is non-stationary (NS; 40 < INS𝑚𝑎𝑥 < 50); babble signal and car 
traffic noise are moderately non-stationary (MNS; INS𝑚𝑎𝑥 < 20). 

Fig. 5: Values of 𝐻 estimated from IMFs 
obtained from the speech signal corrupted 
with acoustic noises with signal-to-noise 
ratio of 5 dB: (a) car traffic (MNS) and (b) 
jackhammer (NS). Dashed lines refer to the 
clean speech. 

 Acoustic Noise Detection: Competitive Criteria 

1. Variance: identifies the first IMF with index 𝐿 (𝐿 ≥  4) where the variance is greater than the 
adjacent modes, i.e.,  

Var[𝐼𝑀𝐹𝐿(𝑡)]  > Var[𝐼𝑀𝐹𝐿−1(𝑡)] and Var[𝐼𝑀𝐹𝐿(𝑡)] > Var[𝐼𝑀𝐹𝐿+1(𝑡)] . 
 

2. StdMean:  is defined as the ratio of the mean and the standard deviation of an IMF. This criterion 
identifies 𝐿 as the first index for which StdMean is greater than the root mean square of the 
standardized mean of the first four modes. 

Fig. 6: Average values of (a) Hurst, (b) Variance, and (c) StdMean adopted for acoustic noise detection. 

Hurst Variance StdMean Hurst Variance StdMean

-5 6.7 -4.2 -4.0 2.5 -4.9 -4.0
0 9.9 2.2 1.4 3.7 0.6 1.1
5 12.9 7.5 6.7 5.3 4.4 4.6
-5 3.8 -0.4 -1.5 1.6 -2.3 -3.1
0 7.6 5.6 3.2 4.3 2.4 1.5
5 11.7 9.7 7.8 6.7 5.1 5.4
-5 -3.4 -4.7 -4.7 -4.3 -4.9 -4.8
0 0.8 0.4 0.3 0.0 -0.4 -0.3
5 5.3 5.2 5.2 4.9 3.7 3.8
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(HNS)

Noise SNR
Hurst Variance StdMean Hurst Variance StdMean

-5 5.2 1.2 0.9 4.8 0.3 0.9

0 4.1 1.8 1.1 2.2 0.5 0.7

5 2.4 1.4 1.0 0.0 -0.5 -0.4
-5 4.6 3.6 2.4 4.7 3.1 2.3

0 3.4 3.3 1.8 3.0 2.1 1.4

5 2.2 1.9 1.1 0.9 0.1 0.2
-5 0.7 0.3 0.2 0.2 0.0 0.0

0 0.3 0.2 0.2 0.0 -0.6 -0.3

5 0.1 0.1 0.1 0.2 -1.1 -0.8

speech signal babble signal

car traffic

(MNS)

jackhammer

(NS)

chainsaw

(HNS)

Noise SNR

Tab. 1: SNR (dB) of the reconstructed signals. Tab. 2: SegSNR gain (dB) of the reconstructed signals. 

This work presented a time-domain noise detection scheme for signals corrupted by non-stationary 
acoustic noise. The proposal is derived from a two steps procedure composed by the empirical mode 
decomposition and a Hurst exponent vector. A SNR gain of 1.6 dB is obtained for the highly non-
stationary chainsaw noise source. Moreover, it can be very promising for speech enhancement 
solutions. 

Fig. 2: The first five IMFs obtained from (a) a clean speech signal, and the same signal 
corrupted with (b) white noise and (c) car traffic noise. 

Detail function: it will be considered as 
an IMF when its mean is close to zero 
( < 10−6 ), and all its maxima and 
minima are positive and negative, 
respectively. 

Sifting: while a detail function 𝑑𝑘 𝑡  is 
not considered as an IMF, steps 2-5 are 
repeated with 𝑑𝑘 𝑡  in place of 𝑎𝑘−1 𝑡 .  

Stopping criteria: the algorithm stops 
when the last residual, 𝑎𝑘 𝑡 , has less 
than three extrema. 

Fig. 3: Average magnitudes of IMFs obtained from a 
fGn white noise sample sequence. 

 

• EMD main features: 
 Adaptativity: decomposition is fully data-driven. 

 Locality:  IMFs are completely based on the local properties of the input data. 

 Completeness: If 𝐼𝑀𝐹𝑘 𝑡  denotes the 𝑘-th mode and 𝑟 𝑡  is the last residual, EMD assures that  

𝑥 𝑡 =  𝐼𝑀𝐹𝑘 𝑡 + 𝑟(𝑡)
𝐾

𝑘=1
 

Fig. 4: Spectrogram and index of non-stationarity of acoustic signals: (a) speech, (b) babble,  

and noises: (c) car traffic, (d) chainsaw, and (e) jackhammer. Dashed lines indicate the values of 𝛾. 

 Reconstructed Signal Quality (SNR and SegSNR) 

Target Signal Reconstruction: the Hanning window is used to avoid discontinuities after the 
concatenation of the reconstructed frames. The reconstructed signals are evaluated in terms of signal-
to-noise ratio (SNR) and segmental SNR (SegSNR). 
 
 

EMD: Trends and Challenges 

The EMD enables the analysis of numerous natural and artificial: 

   biomedical engineering   image processing  seismic  

 speech processing   pattern recognition      financial market  

 
 Challenges: 
 

• Mode Mixing Problem.  
  Ensemble EMD (EEMD); 
  Complete EEMD with Adaptive Noise (CEEMDAN); 
  Multivariate EMD (MEMD). 

 

• Envelope Computation.  
  Optimization-based Mode Decomposition (OMD); 
  Sequential Variational Modal Decomposition (Seq-VMD). 
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Fig. 1: Separation of two signals with different 
time-frequency components. 

EMD 

𝐻 <  1/2: 𝑆𝑥(𝑓) is mostly concentrated at 
the high frequencies; 

𝐻 =  1/2: 𝑆𝑥(𝑓) is approximately constant 
over the entire spectrum (e.g., white noise); 

𝐻 >  1/2: low frequencies are prominent, in 
particular when 𝐻 → 1 (1/𝑓 or pink noise). 

Signal Reconstruction: The noise components are assumed to be mostly concentrated at the IMFs 
with 𝐻 ≅  1 (low-frequency). After the decomposition of the noisy signal, each IMF is divided into 
short-time frames. For each frame, the Hurst exponent defines an index 𝐿 such that the target signal 
is reconstructed using only the first 𝐿 −  1 modes: 𝑥 𝑡 =  𝐼𝑀𝐹𝑘 𝑡𝐿−1

𝑘=1 . 


