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Abstract: This study proposes a method for generating acoustic noise sequences with different distributions and coloured spectra.
The noise samples are obtained by passing a non-Gaussian white noise through a finite impulse response filter. The resulting
power spectral density is proportional to 1/f b, where b is a positive power-law exponent. The noise samples pattern is
determined by the Kurtosis ratio. The proposed generator is evaluated by comparing real and artificial acoustic noises
statistics in the time and frequency domains. The results show that the generated coloured sequences achieved the PSD
decaying rate and also the non-Gaussian pattern of the real environmental acoustic noises.
1 Introduction

The presence of background noise can lead to severe
performance degradation of applications and systems. The
analytical solutions are generally based on the classical
assumption of additive white Gaussian noises (WGN).
However, in contrast with such a hypothesis, coloured
spectra or 1/f b noises have been detected in music [1],
ocean [2], speech [3], optical devices [4], economic data [5]
and a variety of other applications as listed in [6].

In the last decade, some techniques were proposed for
modelling and generating coloured noises [5, 7–9]. Most of
these approaches are based on filtering white noises to
obtain target power spectral density (PSD) [7, 8, 10].
Although such techniques provide coloured PSD shape,
they are limited in the sense that, except for the Gaussian
cases, they do not guarantee the required probability density
function (PDF) of the generated noise samples. In [2], a
random number generator was proposed to obtain non-
Gaussian coloured noises. However, this referred work did
not include the definition of the filter to achieve the 1/f b

PSD. Other methods [11, 12] were proposed for generating
random sequences with non-Gaussian distributions and
coloured spectra. However, in [11] the target PSD is only
guaranteed for a very large sequence length, whereas in
[12] the noise samples are restricted to infinitely divisible
PDFs.

This paper proposes a generation method for artificial
acoustic noises with different distributions and coloured
spectra. To attain the 1/f b spectra, the noise samples are
obtained by filtering a white sequence with a discrete time
fractional order integrator proposed by Al-Alaoui [13]. The
coloured noise samples distribution is determined by the
Kurtosis ratio (K ) [14]. The target value of K is obtained
by properly choosing the pattern of the white noise in the
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filter input. This method assures that the noise samples
reproduce the first, second and fourth moments of the real
acoustic noises. Moreover, there is no restriction on the size
of the generated noise sequences. Although this work refers
to non-Gaussian coloured spectra noises, Gaussian pattern
and white PSD can also be generated using the proposed
approach.

For the evaluation of this proposal, coloured noise
sequences of different sizes are generated with the same
values of K and b of three different real acoustic noises.
The PDF and PSD curves of the real and the artificial
noises are presented for comparison. The study on the
effects of the total number of filter coefficients is also
considered in this work. The results show that both
Gaussian and non-Gaussian distributions of the real noises,
and also their coloured spectra, can be represented by the
generated noise samples.

The main contributions of this work are:

† It defines a finite impulse response (FIR) filter to achieve
the 1/f b PSD shape of the noise sample sequence. The
coefficients are calculated by expanding the target transfer
function in power series, and they determine the
relationship between the Kurtosis ratios of filter input and
output.
† It determines the minimum number of filter coefficients to
achieve coloured spectra. It is shown that, for sequences with
more than 5 × 104 samples, filters with less than 2000
coefficients result in oscillating PSDs. On the other hand,
the frequency response of filters with more than 2000
coefficients are quite similar.
† It proposes a simple and fast estimation method for the
PSD exponent. The results empirically determined the
upper bound b̂ ≃ 1.85 for the estimated PSD exponent of
the artificially generated noises.
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This work is organised as follows. Section 2 presents the
proposed non-Gaussian coloured noise samples generation.
This includes the generation of the non-Gaussian white
noises and the calculation of the filter coefficients. In
Section 3, the coloured noise generator is evaluated by
reproducing three environmental acoustic noises with
different distributions and coloured spectra. A comparison
among real and artificial noises is also presented in this
section. Finally, the conclusions of this work are discussed
in Section 4.

2 Non-Gaussian coloured noise generator

The PSD (S( f )) of a noise sample sequence can be
approximated by

S(f ) = c
1

f b
(1)

where c is a positive real number, and b is in the range
0 ≤ b ≤ 2. Depending on the PSD decaying rate, noises
can be classified as white (b ≃ 0), pink (b ≃ 1) and brown
(b ≃ 2).

The classical approach of filtering a white noise to obtain
the coloured spectra noises is illustrated in Fig. 1. To
achieve the PSD shape in (1), the frequency response of the
filter should be proportional to 1/f b/2. In this paper, a FIR
filter is used for this purpose, and the filter coefficients are
calculated based on the Al-Alaoui digital integrator transfer
function [13]. The white noise is represented by a sequence
of statistically independent random numbers {Xm}.

The Kurtosis ratio is defined as the ratio of the fourth to the
square of the second central moments. It is considered a
useful statistic to determine whether the PDF of a sample
sequence differs from the Gaussian pattern. Background
noises can have Kurtosis different from a Gaussian
distribution (K ¼ 3). In [15], for example, the author
measured different ocean noises with Kurtosis varying in
the range 2.30 ≤ K ≤ 3.67. The Kurtosis ratio of the white
noise {Xm} is given by

KXm
=

E[(Xm − mXm
)4]

s4
Xm

(2)

where mXm
and sXm

are the mean and the standard deviation of
{Xm}, respectively. In order to represent Gaussian and non-
Gaussian white noises, the sequence {Xm} is generated as
proposed in [2].

2.1 Non-Gaussian white noise samples generation

Consider a sequence of independent random numbers {Wm},
uniformly distributed in the interval 0 , Wm ≤ 1. Each
term of the sequence {Xm} is obtained by

Xm = log
1

W2m−1

[ ]n

sin (2pW2m) (3)

where n is a non-negative real number.

Fig. 1 White noise {Xm} is filtered to obtain an output sequence
{Ym} with 1/f b PSD
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If n ¼ 1/2, the transformation in (3) leads to a Gaussian-
distributed sequence. For any other value of n, the sample
sequence {Xm} has a non-Gaussian pattern. Although the
PDF of {Xm} cannot be explicitly determined for any values
of n, its Kurtosis ratio is related with n according to

KXm
= 3

2

G(4n + 1)

[G(2n + 1)]2 (4)

where the gamma function G(.) is defined by

G(r) =
∫1

0

tr−1e−t dt (5)

This means that the desired Kurtosis ratio of {Xm} can be
obtained by choosing a value for n according to (4) and (5).
Since the terms of {Xm} are statistically independent, its
PSD shape is SXm

(f )/ 1/f 0, and can be used to represent a
white noise.

2.2 Calculation of the filter coefficients

The PSD of the output sample sequence {Ym}, resulting from
the filtering illustrated in Fig. 1, is given by

SYm
(f ) = s2

Xm
|H(e j2p f T )|2 (6)

where T is the sampling period and |H(e j2pf T)| is the
frequency response of the filter H(z).

The Al-Alaoui rule [13] is adopted in the filter transfer
function H(z), with b/2 as the fractional order exponent

H(z) = 7T

8

(1 + z−1/7)

(1 − z−1)

[ ]b/2

, 0 ≤ b/2 ≤ 1 (7)

From (7), the amplitude frequency response of H(z) is given
by

|H(e j2pf T )| = 7T

8

[ ]b/2 ������������������������������
(50/49) + (2/7) cos(2p f T )

√

2 sin(p f T )

[ ]b/2

(8)

which means that SY( f ) / 1/f b as f � 0.
Since in this paper H(z) is assumed to be a FIR filter, its

coefficients are calculated by a power series expansion
(PSE) of (7)

H(z) = h(0) + h(1)z−1 + h(2)z−2 + · · · + h(N − 1)z−(N−1)

(9)

The filter coefficients are obtained by the convolution [8]

h(k) = 7T

8

[ ]b/2

a(k) ∗ b(k) (10)

where a(k) and b(k) are the first N/2 coefficients given by the
PSE of the numerator and the denominator of (7),
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respectively,

[1 + z−1/7]b/2 = a(0) + a(1)z−1 + a(2)z−2

+ · · · + a(N/2 − 1)z−(N/2−1) (11)

[1 − z−1]−b/2 = b(0) + b(1)z−1 + b(2)z−2

+ · · · + b(N/2 − 1)z−(N/2−1) (12)

Hence, the coefficients can be expressed by the following
recurrences

a(k) = b/2 − k + 1

7k
a(k − 1), a(0) = 1 (13)

b(k) = b/2 + k − 1

k
b(k − 1), b(0) = 1 (14)

The coloured noise samples are determined by the
convolution

Ym = Xm ∗ h(m) =
∑N−1

k=0

h(k)Xm−k (15)

If the sequence {Xm} is Gaussian distributed, the coloured
noise samples determined by (15) also have a Gaussian
pattern. When {Xm} is non-Gaussian, {Ym} does not have
the same distribution as {Xm}. In such cases, the distribution
of {Ym} cannot be expressed in a closed form. However, its
Kurtosis ratio (KYm

) is related to the filter coefficients and to
the Kurtosis ratio (KXm

) of the input sequence by the
following [2]

KYm
= 3 + (KXm

− 3)

∑N−1
k=0 h(k)4

∑N−1
k=0 h(k)2

( )2 (16)

Thus, given the filter coefficients and a target value of KYm
,

the value of KXm
is obtained by solving (16).

2.3 Proposed coloured noise generation
method

In order to obtain the output sequence {Ym} with the target
values of b and KYm

, the filter coefficients and the terms of
{Xm} must be calculated as described in Sections 2.1 and
2.2. According to (3)–(16), the proposed method for
generating the coloured noise samples is divided into six
consecutive steps

1. Considering the required value of b, calculate the filter
coefficients h(k) using (10), (13) and (14);
2. Given the filter coefficients and the target value of the
Kurtosis ratio KYm

, determine KXm
in (16);

3. Determine the value of n in (4) using the value of KXm
obtained in step 2;
4. Generate the noise sample sequence {Xm} as determined
in (3);
5. Obtain the sequence {Ym} with the corresponding coloured
PSD by filtering the white noise, according to (15);
6. Estimate the values of K̂Ym

and b̂ of {Ym}. If the deviations
between the estimated (K̂Ym

, b̂ ) and the target values (KYm
, b)

are above some threshold, return to step 4. In this work, the
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threshold is set to a maximum error of 1%. However, this
error is not restricted to this value.

In step 6, the estimation of the Kurtosis ratio K̂Ym
is carried

out using (2), exchanging {Xm} for {Ym}. For the b̂ estimation,
the linearisation of (1) is proposed, using the logarithmic
function. A linear regression is applied on the resulting
data, expressed by

ln S(f ) = ln c − b ln f (17)

The value of b̂ is then estimated by the slope (with exchanged
signal) of the obtained regression line.

After obtaining the coloured noise samples {Ym}, the
transformation

Ym′ = pYm + q, p, q [ R (18)

is used to obtain a new sequence {Ym′} with the target
values of mean and variance determined by chosing p and
q. The Kurtosis and the PSD shape of {Ym′} are the same
as {Ym}.

3 Experiments and results

This section presents the results obtained in the experiments
conducted to evaluate the proposed noise generation
method. The main issue is to validate the non-Gaussian
coloured sequences on representing the acoustic
environmental noises. For this purpose, three real noises,
acquired from different acoustic sources, are used as
reference: Airplane, Factory and Volvo. These noises were
collected from the NOISEX-92 database [16], and they
have a duration of 235 seconds and a sampling rate of
19.98 kHz. The estimation results of the Kurtosis ratio and
the value of b̂ are presented in Table 1. Each noise has
about 4.7 M samples, which leads to a precision error of
0.000532 considering a confidence degree of 99%, using
the Chebyshev inequality.

It follows from (8) that the PSD shape of the generated
noise is not the same as expressed in (1) for values of f
close to the Nyquist frequency ( f � 1/2T ) [8]. This
behaviour leads to a non-linear relationship between the
values of b, adopted in the noise generator equations,
and the values of b̂ that are estimated from the generated
sample sequences. For the evaluation of this non-linearity, a
set of 41 coloured sequences are generated with values of b
varying from 0 to 2, with steps of 0.05.

The values of b̂ , estimated from each of the obtained
coloured sequences, are illustrated in Fig. 2. As can be
noted, the PSD decaying rates of the generated coloured
noises, are restricted to 0 ≤ b̂ ≤ 1.85. In order to generate

coloured spectra noises with the target 1/f b̂ PSD, an eighth
degree polynomial is used as an approximation to the curve

Table 1 Kurtosis ratios (K ) and PSD exponents (b) of the real

acoustic noises collected from the NOISEX-92 database

Noises Airplane Factory Volvo

b̂ 1.19 1.83 1.86

K̂ 2.96 3.36 3.54
IET Signal Process., 2012, Vol. 6, Iss. 7, pp. 684–688
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in Fig. 2,

b̂ = 0.0060819 + 0.85554b+ 1.3641b2

− 2.6467b3 + 7.269b4 − 9.9295b5

+ 6.2208b6 − 1.8132b7 + 0.20016b8 (19)

Thus, the value of b to be used in step (1) of the generation
method must be adapted by solving (19). Such a solution is
considered in all the experiments presented in this work.

A second set of experiments is conducted to study the
effects of the total number of filter coefficients (N ) adopted
in (9). For this purpose, artificial coloured noises are
generated considering different values of N. The sample
sequences are generated with the same duration, sampling
rate, Kurtosis ratio and PSD decaying rate of the real Volvo
noise.

Fig. 3 shows the PSDs of the generated coloured noises,
obtained with the different number of filter coefficients.
From the bottom to the top, the PSD curves are shifted
6 dB from each other for the sake of visualisation. As can

Fig. 2 Relationship between the values of b adopted in the
generation method and the corresponding estimated values
b̂ of the obtained sequences

Fig. 3 Comparison among the PSD of artificial noises for different
numbers of filter coefficients
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be noted, the PSD shapes oscillate for N , 2000, mainly at
low frequencies. On the other hand, PSDs obtained with
N . 2000 are considerably similar. This means that, to
avoid the PSD fluctuations, the calculation of each sample
Ym requires at least 2000 terms in the summation of (15).
The number of arithmetic operations per output sample can
be reduced using a deterministic signal modelling technique
[8, 17] which approximates the PSE in (9) by a rational
function. This approximation leads to the implementation of
an infinite impulse response filter, which would change the
relation between KYm

and KXm
, expressed in (16). Thus,

the use of such a technique is not appropriate for the
proposed solution.

In a third set of experiments, coloured spectra noises are
generated according to the three environmental acoustic
noises collected from the NOISEX-92 database (Table 1).
Five independent artificial noise sequences are generated
with 5 × 104, 1 × 105, 5 × 105, 1 × 106 and 4.7 × 106

samples with the same Kurtosis ratio and b values of the
real noises. To avoid the oscillating behaviour of the PSD
shapes (Fig. 3), N ¼ 2000 filter coefficients are adopted.
The accuracies of the Kurtosis ratio and the b estimations
are evaluated by the t-student method considering 95 and
99% confidence intervals (CI). The estimation results are
presented in Table 2. These results show that the coloured
noise samples, considering different sequence sizes, have
values of K̂ and b̂ close to those determined by the real
acoustic noises.

Figs. 4 and 5 depict the PSD and the PDF curves of the
artificial and real acoustic noises obtained with 4.7 × 106

samples, respectively. As can be noted from Fig. 4, the
PSD decaying rates of the artificial noises are quite similar
to those presented by the real noises. These results reinforce
the values estimated for the PSD exponent (Table 2). Fig. 4

Table 2 Kurtosis ratios (K̂ ) and PSD exponents (b̂ ) estimation

results of generated coloured noise signals

Noises Airplane Factory Volvo

b̂ (CI ¼ 95%) 1.187 + 0.042 1.828 + 0.010 1.850 + 0.003

K̂ (CI ¼ 95%) 2.958 + 0.015 3.353 + 0.016 3.532 + 0.006

b̂ (CI ¼ 99%) 1.187 + 0.024 1.828 + 0.018 1.850 + 0.005

K̂ (CI ¼ 99%) 2.958 + 0.008 3.353 + 0.028 3.532 + 0.010

Fig. 4 PSD of the real and generated acoustic noises
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& The Institution of Engineering and Technology 2012



www.ietdl.org
also demonstrates that the PSDs of the artificial noises do not
follow the 1/f b behaviour for large values of f ( f . 4.0 kHz).
This deviation is more easily noted for the Volvo and Factory
noises, which present the highest PSD decaying rates. Thus,
the differences between the values of b adopted in the
generation method and the corresponding estimated values
b̂ are expected to increase with b. This explains the non-
linear relation depicted in Fig. 2.

From Fig. 5, it can be seen that the distributions of the
artificial noises are considerably close to the PDFs of the
corresponding real noises. Note that even the non-Gaussian
distributions (Factory and Volvo) were well represented by
the generated noise samples. It should be noted that only
the Kurtosis ratios and their first and second moments were
used to obtain the artificial noises pattern.

The results of the Bhattacharyya (Bh) [18] and the Kullback–
Leibler (KL) [19] distances, considering the distributions of
the real and artificial noises (see Fig. 5), are shown in Table 3.
The Bh and the KL distances between two PDFs p1(x) and

p2(x) are defined by Bh(p1, p2) = − log



R

�����������
p1(x)p2(x)

√
dx

and KL(p1||p2) =



R
p1(x) log (p1(x)/p2(x)) dx, respectively.

Owing to its non-symmetrical nature, the KL values in Table 3
are calculated as the sum KL(p1‖p2) + KL(p2‖p1). Note that,
in accordance with Fig. 5, the lowest values for both distances
were achieved for the Airplane noise. Hence, Fig. 5 and
Table 3 reinforce that the class of PDFs obtained by the
proposed generator are very interesting to represent the
non-Gaussian distributions of environmental acoustic noises.

Fig. 5 PDF of the real and generated acoustic noises

Table 3 KL and Bh distances between generated and real

acoustic noises

Noises Bh KL

airplane 2.18 × 1024 3.49 × 1025

factory 5.60 × 1024 8.28 × 1025

volvo 2.94 × 1023 4.66 × 1024
688
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4 Conclusion

This paper proposes a method for non-Gaussian coloured
spectra noises generation. The noise sample sequences are
obtained by filtering a white noise using a discrete time FIR
filter. The main contribution of this proposal is that the
obtained 1/f b PSD shape is determined together with a
class of possible distributions, defined by its Kurtosis ratio.
Three real environmental acoustic noises, with coloured
PSDs and different PDFs, are used for the proposed
evaluation of the proposed generator. The experimental
results show that the generated artificial noise samples can
represent both the PSD decaying rate and the distribution of
the real acoustic noises.
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