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Colored Noise Based Multicondition Training
Technique for Robust Speaker Identification

L. Zao and R. Coelho, Member, IEEE

Abstract—This letter proposes a colored noise based multi-
condition training technique for robust speaker identification in
unknown noisy environments. The colored noise samples gener-
ation is based on filtering a white Gaussian sequence that leads
to a power spectral density (PSD) proportional to 1/, where
B € [0,2]. Gaussian mixture models (GMM) are applied to
obtain the speaker models using the noisy speech signals with a
single signal-to-noise ratio (SNR). The colored noise based multi-
condition training is evaluated for the speaker identification task
considering the test utterances corrupted with real acoustic noises
and different values of SNR. The results show that the proposed
technique outperforms the white noise based multicondition and
the clean-speech training approaches.

Index Terms—Automatic speaker recognition, colored noises,
Gaussian mixture model, multicondition training.

I. INTRODUCTION

N recent years, the improvement of noise robustness in

speaker recognition systems became an important issue.
The multicondition training technique [1]-[3] was proposed
to overcome the degradation of the recognition accuracy in
acoustic noisy environments. The idea is to compensate the
mismatch between the training and testing phases. The use of
artificial noise in multicondition training is also an interesting
solution when no information concerning the acoustic noise
sources is available [4]. This technique was applied by using
white noise [4] with different values of SNR. However, colored
spectra have been measured in many environmental acoustic
noises [5], [6].

This Letter presents a new approach for multicondition
training in automatic speaker recognition applications con-
sidering artificial colored acoustic noises. In this proposal,
multiple copies of the training utterances are corrupted with
noise samples artificially generated with Gaussian pattern and
colored spectra. Since it is assumed no knowledge about the
real noises, they are not used to corrupt the training speech. The
proposed approach differs from the multicondition training in
[4] since in this work a single value of SNR is adopted to corrupt
the training speech. However, it is not restricted to the single
SNR case. The PSD shape of the noise samples is achieved
by choosing a filter whose frequency response is proportional
to 1/f7/2. This requirement is attained using the Al-Alaoui
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Fig. 1. White Gaussian sequence w(n ) is filtered to obtain a colored sequence
y(n).

rule [7] in the filter transfer function. The filter coefficients are
calculated via finite-length power series expansion, leading to
a FIR (finite impulse response) filter.

The proposed multicondition training is evaluated for the
speaker identification task. GMM models are obtained from
the feature vectors extracted from the set of corrupted utter-
ances of each speaker. For the identification tests the speech
signals are corrupted by acoustic noises collected from six
different sources, considering five values of SNR. The MFCC
(mel-frequency cepstral coefficients) speech features and their
corresponding dynamic (A) coefficients are extracted from the
training and testing utterances. The experiments are also con-
ducted with white noise based multicondition and clean-speech
training approaches. Additional contributions of this work
areas follows.

* The generation of artificial colored noises, with spectra pa-
rametrized by S € [0, 2], to represent the real environ-
mental acoustic noises. Three different values of 3 are
adopted in the experiments, without assuming any prior
knowledge about the noises sources.

* The definition of a single SNR value to corrupt the training
speech utterances. This value is obtained assuming the oc-
currence of environmental acoustic noises in the tests with
SNR between 0 dB and 20 dB.

This letter is organized as follows. Section II describes the
colored-spectra noise samples generator. Section III presents the
conventional GMM approach and the proposed colored noise
based multicondition training technique. Section IV describes
the speaker identification experiments conducted with the pro-
posed technique. In the same Section, the identification accu-
racies are discussed and compared to the baseline approaches.
Finally, Section V concludes this Letter.

II. COLORED NOISE SAMPLES GENERATION

The PSD of a noise can be represented by its shape S(f)
1/f?, where 3 is generally on the range [0, 2]. According to the
PSD decaying rate, noises can be classified as white (3 = 0),
pink (8 =~ 1) and brown (3 =~ 2).

The colored noise samples y(n) are obtained by filtering a
white Gaussian sequence w(n) (Fig. 1). The PSD of the se-
quence y(n) is given by S(f) = o2 |H(e/>™/T)|2, where o2,
is the variance of w(n), and | H (e/27/T)| is the filter frequency
response.

Considering a finite-length power series expansion, the filter
transfer function can be written as

H(z) = h0) + h(1)271 + -+ AN - 1)27(A’71) )
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where h(k),k = 0,1,..., N—1, are the filter coefficients. Each
term of the sequence y(n) is thus calculated by the convolution

N-1

th)w n—k).

It follows from (2) that, as w(n),
distribution.

The 1/ f7 PSD of 3y(n) is obtained by adopting the Al-Alaoui
digital integrator transfer function [7], with 3/2 as the fractional
order exponent, to compose the transfer function H (z):

[7T (1 + ;) ] B/

o)

where T is the sampling period.
Thus, the resulting filter frequency response [8] is

7T} oz {% + %CQS(WJCT)F/2 4
8 2sen(7w fT) “)

y(n) = w(n) * hin )

y(n) has also a Gaussian

H(z) = )

) = |

It can be noted from (4) that the PSD of y(n) follows the
relation S(f) oc 1/f%, when f — 0.

The filter coefficients are obtained by the convolution A(k) =
a(k)*b(k), where (k) and b(k) are the first N/2 terms obtained
by expanding, respectively, the numerator and denominator of
(3) in power series [8]:

s

b = (FH) a0, a0 =1
B

b(k) = Hk#b(/ﬂ —1), b0)=1. ©)

Hence, a noise sequence y(n) is obtained with PSD, or spec-
trum color, defined by the input 3 value in (5) and (6).

III. COLORED NOISE MULTICONDITION TRAINING PROPOSAL

This section presents the colored noise based multicondition
training technique for robust speaker identification. Since the
GMM models are adopted for the speaker classification, some
concepts about the conventional GMM approach [9] are pre-
sented before the description of the proposed technique.

A. GMM

The GMM (Ag) of a speaker S is defined as a linear combi-
nation of Gaussian components

ijbj

where £ is a D-dimensional speech feature vector, p; are the
. . . M — .

mixture weights, with > i1 Dj= 1, and b; (%) are the Gaussian

densities with mean vectors ji; and covariance matrices K, i.e.,

b;(Z) = !

(2m)P/2, /detK;
L, . lym o
xex1)<—§(m - /l,j)TK]- Y- ,u,j)>. (8)

p(F|As) (7

Thus, the GMM of speaker S can be parametrized by

As =A{p;. i;, K;lj=1,...,M}. )
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Let Y, denote the training speech utterance of speaker S. The
parameters of Ag are estimated as to maximize the likelihood
function

&

p(X|\g) = H (Ze|As)

(10)

where the speech feature matrix X is extracted from ®%, and
composed of ) feature vectors X = [#1, %2, ..., Zg]. The de-
cision rule of the speaker identification task is based on the max-
imum log-likelihood criteria [10],

Q

S =arg max ; log p(Z:|As)

(11)

where Z, are the test feature vectors and the probability
p(F¢|As) is calculated according to (7). This means that the
identified speaker S maximizes the sum in (11).

B. GMM in Multicondition Training

Multicondition data sets (®%,i = 1,2,...,mn) are obtained
by adding the colored noise sequences to multiple copies of the
clean training utterance (%) of each speaker S. The speech
feature matrices, extracted from the corrupted data sets, are then
used to obtain a set of m GMM models (A%) for speaker S:

M

(Z|A%) Zp]bl (@),

According to (12), each speaker model )\g is composed by M
Gaussian densities. This leads to a total of m x M components
computed and stored for each speaker. The models of speaker
S are parametrized by

t=1,...,m.

(12)

K|]_1...._,M}7 (13)
where [[' are the mean vectors and K} i are the covariance ma-
trices of the Gaussian densities b;( ). Hence for speaker S, the
colored multicondition training model (A s) is given by the col-

lection of all the parameters estimated in (13),

Xs = {ph, i}

m
Ag = U)\is:{pé—,ﬁé—,[(ﬂi:1,...,m;j:1,...
i=1

, M}
(14)

Considering the speaker models A g, the decision rule adopted
in the speaker identification task is given by
. Q
S = : log p(#|As).
arg max Z og p(Z¢|As)

t=1

(15)

In this proposal, the probability p(Z|Ag) is adjusted to con-
sider all 7 x M Gaussian densities for speaker S by the fol-
lowing equation:

(FlAs) =

Zmp 7| A%)
—ZWLZ]) bZ Z) = ZZWLpJ

i=1 j=1

). (16)

Each term 7; in (16) represents the weighting of the noise
condition ®%, with >°", 7, = 1. Note that the expression
on the right side of (16) is a linear combination of m x M
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TABLE 1
SPEAKER IDENTIFICATION ACCURACIES (%) WITH THE
PROPOSED MULTICONDITION TRAINING

Training Testing SNR
SNR | 0dB | 5dB | 104B | 15dB | 20 dB | Avereee
10dB | 19.90 | 39.50 | 5651 | 6590 | 73.00 | 50.96
15dB | 17.39 | 34.57 | 54.42 | 66.84 | 74.28 | 49.50
20dB | 15.82 | 28.95 | 48.60 | 66.71 | 78.19 | 47.65

—

Gaussian densities b; (Z), with constants coefficients 7; p;, such
that Z:;l Z;\il ip} = L. Since no knowledge about noise
corruption is assumed, it is adopted m; = 1/m for all i =
1,...,m, in the experiments conducted in this work.

IV. EXPERIMENTAL SETUP AND RESULTS

The speaker identification experiments are conducted using
the KING speech database to evaluate the proposed colored
noise based multicondition training technique. The KING data-
base is composed of ten sessions of speech, spoken by 49 male
speakers. The first five sessions are used in the experiments, re-
sulting in 100 s of speech per speaker, in average, after silence
extraction. Three of these sessions (60 s of speech) are used for
model training. The remaining two sessions are used to evaluate
the identification accuracies with 1960 tests of 1 s, and 392 tests
of 5s.

The speech feature vectors are composed by 20 MFCC and
their corresponding first order dynamic (A) coefficients, ex-
tracted from frames of 20 ms with 50% overlapping.

Four environmental acoustic noises (Buccaneer, Destroyer,
Factory, and Volvo), and also an artificially generated Gaussian
white noise, are collected from NOISEX-92 database [11] to
corrupt the test utterances, with SNR varying from 0 to 20 dB.
A non-stationary noise (Siren) [12], collected from a fire engine
siren, is also included in the experiments.

Three speaker identification experiments are conducted to
evaluate the impact of the SNR values adopted in the training
utterances corruption. For this purpose, m = 3 colored noise
sequences are generated as described in Section II, adopting
( = 0 (white noise), 7 = 1 (pink noise), and § = 2 (brown
noise). These colors are chosen since such noises occur in many
areas of science [5]. In the experiments, the noise sequences are
added to the clean training utterances with SNR of 10 dB, 15 dB
and 20 dB. Each corrupted speech data set is used to generate a
GMM speaker model with M = 32 Gaussian densities. Table I
presents the identification accuracies obtained in the experi-
ments with tests duration of 5 s. These results are obtained with
the 392 test utterances corrupted with the six acoustic noises,
leading to 2352 tests and accuracy precision of 0.0425. This
value is estimated with a confidence degree of 95% using the
Chebyshev inequality [13]. Since the best average identifica-
tion performance is obtained with SNR of 10 dB, this value is
adopted in the other experiments presented in this Letter.

For the colored noise multicondition training evaluation, the
speaker identification task is also conducted with the conven-
tional GMM model (Conv-GMM) [10] and the white noise
based multicondition training baseline (BSLN-Mul) [4]. In the
former, the clean speech signals are used to train GMM models
with 32 Gaussian components. In the latter, multiple copies
of the training speech signals are corrupted by the Gaussian
white noise with SNR varying from 10 to 20 dB, and intervals
of 2 dB. The clean and the corrupted speech signals are then

TABLE II
SPEAKER IDENTIFICATION ACCURACIES (%) FOR TESTS DURATION OF 5 S

Noise ‘ SNR (dB) | Conv-GMM | BSLN-Mul | New Proposal
Clean 91.58 88.01 88.27
20 58.16 72.96 69.39
15 38.27 58.67 57.14
Buccaneer 10 20.66 4133 4541
5 9.95 21.17 23.72
0 2.81 5.36 10.97
20 84.44 83.93 85.46
15 77.30 75.77 71.55
Destroyer 10 54.59 54.85 53.83
5 21.94 25.26 28.06
0 6.38 10.97 10.71
20 83.16 85.20 86.73
15 70.66 80.36 81.63
Factory 10 46.17 67.35 69.90
5 23.72 3597 53.57
0 11.22 5.10 13.52
20 36.73 30.61 32.65
15 16.07 13.01 14.03
Siren 10 485 6.12 6.12
5 2.04 2.81 4.34
0 2.04 2.55 2.81
20 90.05 85.46 89.54
15 87.50 83.16 89.54
Volvo 10 82.91 77.81 88.52
5 71.94 63.78 82.14
0 47.96 40.56 67.60
20 61.73 86.48 74.23
15 38.01 84.44 75.51
White 10 18.88 71.68 75.26
5 8.16 31.12 45.15
0 3.06 12.50 13.78
Average 39.38 47.21 50.96

concatenated and used to generate the BSLN-Mul models with
128 Gaussian densities. Table II presents the identification
accuracies obtained in the experiments with tests duration of
5 s, with accuracies precision of 0.2550.

The results show that the proposed technique presents the
highest accuracies in comparison to the baseline approaches in
21 experiments, from a total of 30 (6 noises X 5 SNR). Com-
paring to the Conv-GMM, the new technique achieves more
than 56% of improvement for the white noise and SNR of 10 dB.
Considering the real acoustic noises, an increase of 30% is ob-
tained for the Factory noise (SNR of 5 dB).

With respect to the BSLN-Mul, the increase in the identifica-
tion rates achieves 27% for the Volvo noise and SNR of 0 dB.
The proposed approach outperforms the BSLN-Mul for severe
noisy conditions (SN, < 10 dB) even when the white noise
is considered in the tests. This can be explained by the fact that
the new proposal adopts a single training SNR of 10 dB, that is
more appropriate for this noise levels.

It can be noted that the BSLN-Mul outperforms the new
approach for the Buccaneer noise with SNR of 15 dB and
20 dB. However, when these same noise levels are applied in
the training phase, the proposed technique achieves superior
performances than the BSLN-Mul: 59.18% for SNR of 15 dB
and 76.53% for 20 dB. These results show that, for the Buc-
caneer noise, training with higher noise levels than those in
the tests degrades the performance of the proposed approach
in comparison to the BSLN-Mul. Considering the Siren noise,
the Conv-GMM achieves the highest accuracies in the tests
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Fig. 3. Average identification accuracies (%) for tests duration of 1 s.

with SNR of 15 dB and 20 dB. However, the new proposal
outperforms the BSLN-Mul for all values of SNR, except for
the similar identification rates obtained with SNR of 10 dB.
The performance obtained for Siren noise can be improved by
the use of the post-processing spectral attenuation algorithm
proposed for highly non-stationary noises [14].

Tables I and II also demonstrate that other SNR values can be
used in the multicondition training. For example, the adoption
of SNR of 20 dB leads to an average identification accuracy of
47.65%, while the Conv-GMM and the BSLN-Mul approaches
achieve 39.38% and 47.21%, respectively.

Fig. 2 presents a comparison among the proposed and the
baseline approaches for the different acoustic noises used to
corrupt the test utterances. The curves present the average
identification rates obtained considering the five values of
SNR shown in Table II. It can be noted that the proposed
technique presents superior performances compared to the
BSLN-Mul for all the environmental noises. Fig. 3 depicts the
same comparison among the average identification accuracies,
considering tests duration of 1 s. For this case, the proposed
technique also achieves the highest identification rates for the
real environmental noises. In comparison to the Conv-GMM,
the increase in the average identification accuracy achieves
9.6% for the Volvo noise corruption. For the Factory noise,
the proposed approach outperforms the BSLN-Mul with an
increase of 10.1% in the average identification rates. Even for
the Volvo noise, for which the BSLN-Mul does not improve
the Conv-GMM performance, the proposed technique achieves
the highest accuracies for both 1 s and 5 s tests durations.
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V. CONCLUSION

This Letter proposed a colored noise based multicondition
training technique for robust speaker identification. The main
idea is to artificially corrupt the clean-speech training utterances
to obtain the GMM speaker models. For this purpose, colored
noise sequences were obtained by filtering white Gaussian
sequences, resulting in 1/f? PSD shapes, with 3 € [0,2].
The description of the noise samples generation method was
also presented in this Letter. Speaker identification experi-
ments were conducted to evaluate the proposed multicondition
training technique. In the identification tests, the speech sig-
nals were corrupted with environmental acoustic noises and
different values of SNR. For comparison, the performances
of white noise based multicondition and clean-speech training
were also examined in the experiments. The results show that
the new technique outperforms the white noise based multi-
condition training approach for all the environmental noises
considered in the speaker identification tests.
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