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A novel text-independent verification system based on the fractional

Brownian motion (M dim f Bm) for automatic speaker recognition is

presented. The performance results of the M dim f Bm were

compared to those achieved with the Gaussian mixture models

(GMM) classifier using the mel-cepstral coefficients. A speech data-

base, obtained from fixed and cellular phones, uttered by 75 different

speakers was used. The results have shown the superior performance

of the M dim f Bm classifier in terms of recognition accuracy. In

addition, the proposed verification scheme employs a much simpler

modelling structure as compared to the GMM.

Introduction: In this Letter, we propose a text-independent speaker

verification system which incorporates a new classification scheme

based on the fractional Brownian motion (f Bm) stochastic process.

The f Bm [1] is a mono-fractal stochastic process, i.e. it uses a single

value of the Hurst (H) parameter [2]. The H parameter (0 <H < 1)

represents the samples’ time-dependence or scaling degree of a

stochastic process.

According to the value of H and so the decaying rate of the

auto-correlation coefficient function r(k) (�1 < r(k) < 1) as k!1, a

stochastic process shows the presence of: (i) anti-persistence –

0 <H< 1=2 where the auto-correlation function rapidly tends to zero

and
P

k¼�1
1 r(k)¼ 0; (ii) short-range dependence (SRD) – H¼ 1=2

where the auto-correlation function r(k) exhibits an exponential decay

to zero, such that
P

k¼�1
1 r(k)¼ c, where c > 0 is a finite constant

and (iii) long-range dependence (LRD) – 1=2 <H< 1 where the auto-

correlation function r(k) is a slowly-vanishing function which means a

strong time-dependence even between samples that are far apart. In this

case, we have
P

k¼�1
1 r(k)¼1.

To be suitable for applications in ASR systems we developed a new

classification scheme called multi-dimensional fractional Brownian

motion (M dim f Bm). The proposed classifier is obtained from the

set of H parameters, means and variances computed from any speech

feature matrix. The M dim f Bm classifier models the speech signal

features considering their time-dependence or scaling characteristics. We

have compared the performance of the M dim f Bm to those achieved

with the GMM [3] classifier using the mel-cepestral coefficients.

For fractal or self-similar processes only, we can relate the H para-

meter to a fractal dimension (Dh) [1] through the equation Dh¼ 2�H.

The fractal dimension was previously used in pattern recognition studies

in [4] and [5]. In [6], the fractal dimension was applied for discriminating

fricative sounds. A speaker identification system using cepstral coeffi-

cients is compared in [7] to a system based on the joint use of cepstral

coefficients and the fractal dimension. These studies share the hypothesis

that speech is a fractal signal. In this Letter, however, although we

estimate the H parameter from the speech feature matrix, we do not

assume that the speech signal is a fractal or self-similar signal.

Description of M dim f Bm classifier: The M dim f Bm model of a

given speaker is generated according to the following steps:

1. Pre-processing: the feature matrix is formed from the input speech

features. It contains c rows, where c is the number of feature coeffi-

cients per frame and l columns, where l is the number of frames.

2. Decomposition: for each row of the feature matrix we apply the

wavelet decomposition and obtain the detail sequences where j is the

decomposition scale and k is the coefficient index of each scale.

3. Parameters extraction=estimation: from each set of detail sequences

obtained from each row of step 2, we estimate the mean, the variance

and the H parameter. For the H parameter estimation we use the Abry-

Veitch wavelet-based estimator proposed in [8].

4. Generation of f Bm processes: using the random midpoint displace-

ment (RMD) algorithm [1] and the three parameters computed in step 3,

we generate the f Bm processes. Therefore, we obtain c f Bm processes.

5. Determining histogram and generating speaker model: we compute

the histogram of each f Bm process. The set of all histograms defines a

c-dimensional f Bm process which defines the speaker M dim f Bm

model.

In the phase of tests we use the histograms of the speaker

M dim f Bm model to compute the probability that a certain c-dimen-

sional feature vector x belongs to that speaker. This is performed to the l

feature vectors, resulting in l probability measures: p1, p2, . . . , pl.
Adding these values, we obtain a measure of the likelihood that the

set of feature vectors under analysis belongs to that speaker.

Experimental results: In this Section, we compare the results of the

verification performance of the proposed M dim f Bm system to

those of the Gaussian mixture models (GMM) classifier. The database

(BaseIME) used in our experiment is composed of 75 speakers (male

and female). In fact, we have two databases: in one of them the speech

signal was recorded from a fixed telephony channel and in the other

one speech was obtained from a cellular telephony channel. Tests

were applied to 20, 10 and 5 s speech segments. The best (upper limit)

GMM performance is generally achieved for 32 Gaussians [3]. In our

experiments, we have used 15 mel-cepstral coefficients for both

classifiers and 32 Gaussians for the GMM classifier. Note that the

feature matrix has c¼ 15 rows, hence, we have a M dim f Bm

dimension equal to 15. A separate speech segment of 1 min duration

was used to train a speaker model.

From several experiments, we have found that a good configuration

for the H parameter estimation is given by the following specifications:

(i) frame duration: 80 ms; (ii) Daubechies wavelets [9] with 12

coefficients; (iii) number of decomposition scales: 6; (iv) scaling

region from 3 to 5.

The performance results for the text-independent speaker verification

systems were obtained by varying the threshold and computing the miss

(false rejection) and the false alarm (false acceptance) probabilities.

These error probabilities are plotted using the detection error trade-off

(DET) curves [10]. We have used as background the universal back-

ground model (UBM) model [11]. This one was constructed from

speech material of 20 speakers that do not belong to the set of 75

speakers used for the testing experiments.

Figs. 1 and 2 show the DET curves for the M dim f Bm and GMM

based on 15 mel-cepstral coefficients for the speech database obtained

from fixed phones, respectively. The results presented in these Figures

show that the M dim f Bm classifier in general presented better

performance when compared to the GMM classifier. Note that the

performance gains are substantial for a wide range of medium to low

false alarm probabilities. It is important to remark that in most

applications high false alarm probabilities must be avoided.

Fig. 1 DET curves for systems based on mel-cepstral coefficients using
M dim f Bm classifiers for fixed phone

Table 1 presents the equal recognition rates (ERR) for the operating

point of the DET curve where fr¼ fa. This measure is given by

ERR¼ (1�EER)100% where EER is the equal error rate usually

employed in the literature. As we note the ERR is comparable for

both systems. However, the DET curves show that for most of the

operating points (miss probability� false alarm probability) the

proposed classifier provides better results.

These results, along with the DET curves, corroborate the superior

modelling procedure of the M dim f Bm strategy for the speaker

verification task. Moreover, the M dim f Bm results were achieved
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for a simpler model with dimension equal to 15. Each f Bm is

characterised by only three scalar parameters (mean, variance and H).

Conversely, the GMM used 32 Gaussians, each one characterised by 1

scalar parameter, one mean vector and one covariance matrix, to

achieve the performance results presented in Figs. 1 and 2. This

means that the M dim f Bm classifier yields a better modelling

accuracy with a lower computational load.

Fig. 2 DET curves for systems based on mel-cepstral coefficients using
GMM classifiers for fixed phone

Table 1: ERR (%) of verification systems based on mel-cepstral
coefficients, for speech signals recorded from fixed
telephony and cellular telephony channels

Test
duration M dim f Bm (fixed) GMM (fixed) M dim f Bm (cel) GMM (cel)

20 s 98.08 98.00 95.06 94.93

10 s 98.31 97.59 94.67 94.63

5 s 97.62 97.27 94.34 94.32

Conclusions: In this Letter we have presented a new classifier for

text-independent speaker verification, the M dim f Bm. The proposed

classification approach is generated from the fractional Brownian

motion stochastic process. We have shown that, as compared to the

GMM classifier, the M dim f Bm yielded the best overall recognition

accuracy for the verification task. The results presented in this Letter

show that the M dim f Bm provides a more accurate and much

simpler modelling strategy as compared to the GMM. We conclude,

therefore, that the M dim f Bm is a very attractive tool in the area of

automatic speaker recognition systems and represents an important

contribution due to its performance and simplicity.
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